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Classical semi-empirical force fields ChE210D 

Today's lecture: approximate descriptions of interatomic interactions suitable for 

descriptions of many organic, inorganic, and other non-reacting systems. 

The classical picture 

The classical approximation 

The extensive computational demands of electronic structure calculations mean that their appli-

cation to even modest-sized molecular systems is quite limited.  Fortunately, to good approxima-

tion, we don’t need to solve the Schrodinger equation for many systems to accurately reproduce 

their properties. 

Instead, we can use a classical description, which ignores the motions of the electrons and de-

scribes the time-evolution of the nuclear positions alone.  A classical approach uses a force field 

or classical potential energy function that approximates the quantum ground-state potential 

energy surface due to electronic structure and internuclear interactions, as a function of the po-

sitions of the nuclei. 

Classical descriptions work very well under the following conditions: 

• the Born-Oppenheimer approximation is valid  

• the electronic structure is not of interest  

• the temperature is modest (not close to absolute zero) 

• there is no bond breaking or forming 

• electrons are highly localized (metals and pi-bonded systems are delocalized) 

Basic features 

In the classical approximation, we describe a system by the positions and momenta of all of the 

atomic nuclei: 

𝐫𝑁 = (𝑥1, 𝑦1, 𝑧1, 𝑥2, … , 𝑦𝑁 , 𝑧𝑁) 

𝐩𝑁 = (𝑝𝑥,1, 𝑝𝑦,1, 𝑝𝑧,1, 𝑝𝑥,2, … , 𝑝𝑦,𝑁, 𝑝𝑧,𝑁) 

Even though technically we deal with nuclei, we can think of the fundamental particle as an atom.  

Unlike quantum uncertainty, each atom has a definite position 𝐫 and momentum 𝐩.  
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Alternatively, we could consider the velocity 𝐯 instead of the momentum, since the two simply 

differ by a constant mass factor.  We will actually use the momentum more often, since in statis-

tical mechanics it is naturally conjugate to position. 

A microstate is just one “configuration” of the system.  In a classical system, one microstate is 

characterized by a list of the 3𝑁 positions 𝐫N and 3𝑁 momenta 𝐩𝑁, for a total of 6𝑁 pieces of 

information.  For a microstate 𝑚 we might use the notation (𝐩𝑚
𝑁 , 𝐫𝑚

𝑁) to indicate specific values 

of these variables. 

For any microstate, we can calculate the total, potential, and kinetic energies. The potential en-

ergy function depends on the positions 𝑈(𝐫𝑁) and the kinetic energy function depends on the 

momenta 𝐾(𝐩𝑁).  The Hamiltonian of a classical system is the function that gives the energy of 

a microstate: 

𝐻(𝐩𝑁 , 𝐫𝑁) = 𝐾(𝐩𝑁) + 𝑈(𝐫𝑁) 

The kinetic energy term simply follows 

𝐾(𝐩𝑁) = ∑
|𝐩𝑖|2

2𝑚𝑖
𝑖

 

Interactions between atoms are described by a potential energy function that depends on the 

positions but not the momenta of all of the atoms, 𝑈(𝐫1, 𝐫2, … ).  Fundamentally, the potential 

energy function approximates ground state energy that would be obtained by solving the elec-

tronic structure using Schrodinger’s equation, for fixed nuclear positions. 

The time evolution of the system is deterministic and described by Newton’s equations: 

𝑚𝑖

𝑑2𝐫𝑖

𝑑𝑡2
= 𝐅𝑖         for all atoms 𝑖 

Or alternatively, 

𝑑𝐩𝑖

𝑑𝑡
= −

𝑑𝑈

𝑑𝐫𝑖
(𝐫1, 𝐫2, … ) 

or finally, 

𝑑𝐩𝑁

𝑑𝑡
= −∇𝑈(𝐫𝑁) 

Here, the LHS gives the time rate of change of momentum of atom 𝑖 and the RHS gives the force 

on atom 𝑖 which, by definition, is the derivative of the potential energy function with respect to 

atom 𝑖’s position. 
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The total energy is constant during a system’s time evolution according to Newton’s laws.  This 

is a statement of the conservation of energy.  It is readily shown: 

𝑑𝐻

𝑑𝑡
= ∑

𝑑𝑈

𝑑𝐫𝑖

𝑑𝐫𝑖

𝑑𝑡
+ ∑

𝑑

𝑑𝑡
(

𝐩𝑖
2

2𝑚𝑖
) 

= ∑ (
𝑑𝑈

𝑑𝐫𝑖

𝑑𝐫𝑖

𝑑𝑡
+

𝐩𝑖

𝑚𝑖

𝑑𝐩𝑖

𝑑𝑡
)       combining the sums 

= ∑ (
𝑑𝑈

𝑑𝐫𝑖

𝑑𝐫𝑖

𝑑𝑡
+

𝑑𝐫𝑖

𝑑𝑡

𝑑𝐩𝑖

𝑑𝑡
)       using the fact that 𝐩𝑖 = 𝑚𝑖

𝑑𝐫𝑖

𝑑𝑡
 

= ∑
𝑑𝐫𝑖

𝑑𝑡
(

𝑑𝑈

𝑑𝐫𝑖
+

𝑑𝐩𝑖

𝑑𝑡
) 

= ∑
𝑑𝐫𝑖

𝑑𝑡
× 0 = 0                     using Newton's law 

𝑑𝐩𝑖

𝑑𝑡
= −

𝑑𝑈

𝑑𝐫𝑖
 

The atomic force field 
The most important aspect of the classical description is the potential energy function 𝑈(𝐫𝑁).  

This function takes in a set of positions of all of the atoms and returns an energy due to the 

interatomic interactions.  This energy approximates that which one would obtain by solving the 

Schrodinger equation for all of the electrons in the multi-atom system, for given fixed positions 

of the nuclei.  The approximation stems from examining the various modes by which atoms can 

interact according to the Schrodinger equation, and patching simple, often first-order theoretical 

expressions for these together. 

𝑈 typically has two main components, energies due to bonded and nonbonded interactions.  

These arise as different interpretations of the solution of the Schrodinger equation for the elec-

tron clouds; it turns out that our notion of bonded interactions naturally manifest as solutions to 

the wavefunctions when atoms approach at close range.   

Bonded interactions 

Bond stretching 
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An accurate description of bond stretching that well-describes quantum-mechanical solutions is 

the empirical Morse potential: 

𝑢(𝑑) = 𝐷𝑒[1 − 𝑒−𝑎(𝑑−𝑑0)]
2
 

where 𝑑 is the length of the bond,𝑎 a constant, 𝑑0 the equilibrium bond length, and 𝐷𝑒 the well 

depth minimum.  However, this form is rarely used.  It requires three parameters per bond and 

is somewhat expensive to compute in simulation due to the exponential term.   

Since the energy scales of bond stretching are so high, bonds rarely deviate significantly from the 

equilibrium bond length.  Thus we can use a second-order Taylor expansion around the energy 

minimum: 

𝑢(𝑑) = 𝑎(𝑑 − 𝑑0)2 

where 𝑎 is a different constant from above. 

Bond angle bending 

 

This potential accounts for deviations from the preferred hybridization geometry (e.g., sp3).  

Again a common form is a second-order Taylor expansion about the energy minimum: 

𝑢(𝜃) = 𝑏(𝜃 − 𝜃0)2 

where 𝜃 is the bond angle between three atoms and 𝑏 and 𝜃0 are constants. 

Bond torsions/dihedrals 

 fig 
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These interactions occur among four atoms and account for energies of rotations along bonds.  

Unlike bonding and angle terms, these degrees of freedom are “soft” in that torsional energies 

are often not so high as to only allow small deviations from an equilibrium structure. 

Generic torsional interactions can be approximated by a cosine expansion, 

𝑢(𝜔) = ∑ 𝑐𝑛 cos(𝜔)𝑛

𝑁

𝑛=0

 

where 𝜔 is torsional angle, 𝑛 is a summation index, 𝑐𝑛 are summation coefficients, and 𝑁 is the 

number of terms in the expansion.  In practice, an alternative but ultimately equivalent expres-

sion is often used: 

𝑢(𝜔) = ∑ 𝑐𝑛[1 + cos(𝑛𝜔 − 𝛾)]

𝑁

𝑛=0

 

where the 𝑐𝑛 are different from above and the parameter 𝛾 is an additional offset parameter.  

This form has the advantage of converging faster for a given number of terms in the expansion.   

In practice, generally only one or two terms is used. 

Nonbonded interactions 

The nonbonded interactions apply to any atoms that are not closely bonded (generally with a 

bond order greater than 3 or 4), either within the same molecule or between two different mol-

ecules.  These interactions are described using a pairwise decomposition of the energy. 

Formally, we can decompose the potential energy function into interactions involving single at-

oms, pairs of atoms, triples of atoms, and so on and so forth: 

𝑈(𝐫𝑁) = ∑ 𝑢1(𝐫𝑖)

𝑁

𝑖=1

+ ∑ ∑ 𝑢2(𝐫𝑖, 𝐫𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ ∑ ∑ ∑ 𝑢3(𝐫𝑖, 𝐫𝑗 , 𝐫𝑘)

𝑁

𝑘=𝑗+1

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ ⋯ 

Typically, by symmetry, the two- and three-body terms do not depend on the absolute positions 

of the molecules but on the relative positions: 

𝑈(𝐫𝑁) = ∑ 𝑢1(𝐫𝑖)

𝑁

𝑖=1

+ ∑ ∑ 𝑢2(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ ∑ ∑ ∑ 𝑢3(𝑟𝑖𝑗 , 𝑟𝑖𝑘, 𝑟𝑗𝑘)

𝑁

𝑘=𝑗+1

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ ⋯ 

We see that multi-body effects are first included at the level of the pair potential.  We would like 

to truncate this expansion beyond that point for the following reason: the two- and three- body 

interactions require a loop over atom pairs and triplets, respectively, and thus their relative 
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computational expense goes as 𝑁2 and 𝑁3.  The cubic scaling might make our simulations pro-

hibitive for modest system sizes. 

By truncating the higher order interactions, we typically neglect important effects as these make 

nonnegligible contributions to the total energy.  Instead, we approximate the higher-order ener-

gies by renormalizing the pair interactions.  At this point, we have an effective pair potential 

rather than the one which would result from this systematic expansion: 

𝑈(𝐫𝑁) ≈ ∑ 𝑢1(𝐫𝑖)

𝑁

𝑖=1

+ ∑ ∑ 𝑢eff(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

Electrostatics 

 

In the classical approximation, atoms can have a net charge, which may be a partial or formal 

charge.  Here, the charges are typically determined so as to reproduce the same electrostatic 

potential that would be given by the true electronic structure and electron density distribution. 

Atoms with partial charges interact through Coulomb’s law,  

𝑢(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
 

for the two atoms 𝑖 and 𝑗 separated by distance 𝑟𝑖𝑗.  The partial charges are given by 𝑞𝑖 and 𝑞𝑗, 

and 𝜖0 is the free space permittivity.  Note that electrostatic interactions are long-ranged and 

thus require special treatment, which we will discuss in more detail in Simulations of Bulk Phases. 

van der Waals attractions 

Correlations between the instantaneous electron densities surrounding two atoms gives rise to 

an attractive energy.  This is a general attractive force between all atoms, due to correlation be-

tween instantaneous dipoles between electron clouds, and can be derived from a model of in-

teracting dipolar molecules (so called Drude molecules, Leach 4.10.1).  Solving the Schrodinger 

equation shows that the attraction has this functional form: 

𝑢(𝑟𝑖𝑗) ∝ 𝑟𝑖𝑗
−6 
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where 𝑟𝑖𝑗 is the distance between the two atoms.  The constant depends on the kind of the two 

atoms (their elements and chemical environments).  These forces are called dispersion, van der 

Waals, or London forces. 

Excluded volume repulsions 

When two atoms make close approach, they experience a steep increase in energy and a corre-

sponding strong repulsion.  This occurs because the electron clouds of the two atoms begin to 

overlap, and the Pauli principle forbids any two electrons from having the same quantum num-

bers.  At moderate internuclear distances, this potential has the approximate form: 

𝑢(𝑟𝑖𝑗) ∝ exp(−𝑐𝑟𝑖𝑗) 

where 𝑐 is a constant.  However, this repulsion can often be successfully modeled by a simple 

power law that is more efficient to compute than the exponential: 

𝑢(𝑟𝑖𝑗) ∝ 𝑟𝑖𝑗
−𝑚 

where 𝑚 is greater than 6. 

Lennard-Jones interactions 

 

A common way to model both van der Waals and repulsive forces is to combine them into a single 

expression.  Lennard-Jones proposed the following simple approximation for pairwise interac-

tions of atoms: 

𝑢(𝑟𝑖𝑗) = 4𝜖 [(
𝑟𝑖𝑗

𝜎
)

−12

− (
𝑟𝑖𝑗

𝜎
)

−6

] 

where 𝜖 and 𝜎 are constants that depend on the particular types of atoms 𝑖 and 𝑗.  The minimum 

in the potential occurs at: 

𝑢(𝑟𝑚 = 21 6⁄ 𝜎) = −𝜖 

The prefactor of 4 ensures that the minimum value of the potential is – 𝜖.   
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Here, the attractive force enters with the 𝑟𝑖𝑗
−6 term, while the repulsive energy is given by 𝑟𝑖𝑗

−12.  

Why do we use the power of -12 for the repulsive part?  It is mainly for convenience and compu-

tational efficiency, since it is just the square of the attractive term.  It turns out that the properties 

of molecules aren’t so sensitive to the exact nature of the repulsive energy, so long as it is a steep 

function when atoms come close. 

The LJ interaction can also be written in several equivalent forms using different parameter com-

binations.  Using the minimum energy distance 𝑟𝑚 instead of 𝜎 we have: 

𝑢(𝑟𝑖𝑗) = 𝜖 [(
𝑟𝑖𝑗

𝑟𝑚
)

−12

− 2 (
𝑟𝑖𝑗

𝑟𝑚
)

−6

] 

Alternately, we can lump all parameters into two coefficients: 

𝑢(𝑟𝑖𝑗) = 𝐴𝑟𝑖𝑗
−12 − 𝐶𝑟𝑖𝑗

−6 

with 

𝐴 = 4𝜖𝜎12 = 𝜖𝑟𝑚
12 

𝐶 = 4𝜖𝜎6 = 2𝜖𝑟𝑚
6  

Buckingham interactions 

A sometimes-used alternative to the Lennard-Jones expression is the Buckingham potential: 

𝑢(𝑟𝑖𝑗) = 𝜖 [
6

𝛼 − 6
𝑒

−𝛼(
𝑟

𝑟𝑚
−1)

−
𝛼

𝛼 − 6
(

𝑟

𝑟𝑚
)

−6

] 

This potential has three parameters: 𝜖, 𝑟𝑚, 𝛼.  Like the Lennard-Jones potential, 𝜖 and 𝑟𝑚 describe 

the energy well depth and distance.  The parameter 𝛼 controls the overall shape of the well (e.g., 

narrowness).  This potential better-models the repulsive interaction at modest nuclear distances, 

but is often abandoned in favor of the LJ potential because it requires three (versus two) param-

eters and because the exponentiation is more computationally expensive. 

A minimal force field 

Putting all of these energy components together, we arrive at a classical picture of molecular 

systems described by a potential energy function with the following minimal form: 

𝑈(𝐫1, 𝐫2, … ) = ∑ 𝑎𝑖(𝑑𝑖 − 𝑑𝑖,0)
2

bonds 𝑖

 

+ ∑ 𝑏𝑗(𝜃𝑗 − 𝜃𝑗,0)
2

angles 𝑗
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+ ∑ [∑ 𝑐𝑘,𝑛 [1 + cos(𝜔𝑘𝑛 + 𝛾𝑘)]

𝑛

]

torsions 𝑘

 

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
+ 4𝜖𝑖𝑗 [(

𝑟𝑖𝑗

𝜎𝑖𝑗
)

−12

− (
𝑟𝑖𝑗

𝜎𝑖𝑗
)

−6

]

pairs 𝑖𝑗

 

The potential energy is a function of all of the atomic positions 𝐫𝑁 because the bond distances 

𝑑𝑖, angles 𝜃𝑗 , torsions 𝜔𝑘, and pairwise distances 𝑟𝑖𝑗 are functions of 𝐫𝑁.  Of the four sums here, 

the most computationally expensive, by far, is that corresponding to the pairwise atomic sum, 

since its number of terms scales as 𝑁2 rather than 𝑁 as in the others. 

Force field parameterization and transferability 

The minimal force field above contains a large number of parameters: 

𝑎𝑖, 𝑑𝑖,0, 𝑏𝑗 , 𝜃𝑗,0, 𝑐𝑘,𝑛, 𝛾𝑘, 𝑞𝑖, 𝜖𝑖𝑗 , 𝜎𝑖𝑗 

Notice that there can be different sets of parameters for different types of bonds, angles, tor-

sions, partial charges, and repulsive/dispersive interactions depending on the kinds of atoms in-

volved and their chemical environment (i.e., an oxygen-bound carbon behaves differently than a 

nitrogen-bound one).  This can result in a huge set of adjustable parameters that define a partic-

ular force field. 

Values for force field parameters are typically taken from a combination of electronic structure 

calculations on small molecules and experimental data.  The inclusion of experimental data tends 

to improve accuracy because it fits properties to “bulk” phases rather than the very small systems 

that ab initio methods can treat.  As a result, these force fields are semi-empirical. 

The minimal force field described above is typically fit in the following fashion: 

1. Bond stretching and angle bending parameters are the easiest to fit because they are 

associated with “hard” or stiff degrees of freedom.  These values can often be fitted to 

experimental vibrational spectra and structural data, sometimes in combination with 

electronic structure calculations on small molecular fragments. 

2. The Lennard-Jones parameters can often be taken from van der Waals radii and energet-

ics extracted from experimental crystal packing data and critical point data for small mol-

ecules.  Iterative simulations of small molecule fragments are sometimes used to find the 

parameters that reproduce the correct bulk properties, such as phase envelopes or en-

thalpies of phase change.   
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3. Oftentimes, only the self-self interactions are determined for Lennard-Jones parameters, 

that is 𝜖𝐴𝐴 and 𝜎𝐴𝐴 for the interaction between two atoms of the same type 𝐴.  Then, 

approximate combining rules can be used to estimate the parameters between non-like 

atom types.  The Lorentz-Berthelot rules are widely used: 

𝜎𝐴𝐵 =
1

2
(𝜎𝐴𝐴 + 𝜎𝐵𝐵) 

𝜖𝐴𝐵 = √𝜖𝐴𝐴𝜖𝐵𝐵 

4. Partial charges are assigned on the basis of ab initio calculations of the electron density 

surrounding small molecular fragments.  To perform such calculations, the nuclear con-

formation is often simultaneously optimized, and if a molecule has multiple relevant con-

formers (e.g., rotations around a torsional angle), a separate electron density must be 

computed for each.  The continuous electron density can then be parsed into discrete 

atomic partial charges by a number of methods.  The Restrained Electrostatic Potential 

Fit (RESP) algorithm does this in a manner so as to reproduce the electrostatic potential 

around the molecule. 

5. Finally, torsional potentials are often used to adjust the energies of rotation around 

bonds to accommodate any remaining energies not already captured by van der Waals 

and partial charge interactions that are needed for agreement with electronic structure 

calculations.  Some force fields have no torsional potentials at all, if van der Waals and 

electrostatic interactions sufficiently model the net energies of bond rotations. 

One can imagine that there is a fair degree of flexibility in fitting the “soft” interactions: the van 

der Waals, partial charge electrostatics, and torsional interactions.  These terms have significant 

overlap.  One additional goal and constraint in fitting these parameters is transferability, that is, 

the ability to reuse the same sets of parameters for different molecules and systems.   

Transferability is often informed by chemistry: there might be one set of parameters for SP2-

hybridized carbons, one for SP3-hybridized, one for aromatic carbons, etc.  Thus, force field de-

velopers often train the value of parameters to multiple molecules and systems at once, in order 

to find combinations that are the most widely transferable. 

A number of community-developed force field efforts exist.  Within each of these efforts, there 

are multiple versions of the force field, as they tend to be refined over time: 
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force field originated by (year) used for / coverage 

AMBER Kollman, UCSF (1994) proteins, nucleic acids, carbohydrates 

CHARMM Karplus, Harvard (1983) proteins, nucleic acids, lipids, organics 

GROMOS U. Groningen (1996) proteins, nucleic acids, sugars, organ-
ics 

OPLS Jorgensen, Purdue 
(1988) 

many liquids 

ECEPP Scheraga, Cornell (1975) proteins 

UFF Rappe et al. (1992) approximate for full periodic table 

MM2/3/4 Allinger, U Georgia 
(1977) 

small molecules and hydrocarbons 

 

The first three of these are perhaps the most widely used and developed, in part due to the 

widespread investigation of biomolecules using simulation.  These three also refer to simulation 

packages that contain many popular algorithms for evaluating the properties of systems. 

For water, there are many specialized force fields that can be used in combination with the 

above.  The most frequently used water models are the SPC/E, TIP3P, and TIP4P models.  Many 

biomolecular force fields (e.g. for proteins) were developed for specific use with some of these 

models.  However, newer and more accurate water models have now been developed, including 

the OPC family, and TIP4P/EW, TIP4P/2005. 

For systems that are non biomolecular in nature or that do not have well-established community-

developed force fields available, there are two routes that might simultaneously be pursued.  One 

is to use a generic force field such as the Generalized Amber Force Field (GAFF) that is designed 

to give reasonable representation for a variety of organic compounds.  Such models should be 

carefully tested and benchmarked against experimental data.  Second, one should always search 

the recent literature to identify (and evaluate) current simulation models and approaches for this 

the particular system of interest, if any such work exists.    

Polarizable force fields 

The fixed-partial charge model described above isn’t able to account for induced polarization, 

that is, the rearrangement of a charge distribution in a molecule due to nearby interacting mol-

ecules.  A number of methods have emerged for incorporating this effect into classical force 

fields.  Two common approaches: 

• fluctuating atomic partial charges 

• induced dipoles on each atom 
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In each case, the partial charge or induced dipole must be solved iteratively for each confor-

mation of the molecule.  The iteration typically reaches a self-consistent state where the electric 

field due to the charges/dipoles is consistent with the induced response in the molecule. 

Because of the need to iterate upon each step of a simulation, polarizable force fields are expen-

sive to simulate and historically have not been widely used.  However, with increased computing 

power and the recognition that polarizability can significantly improve the accuracy of a force 

field, these approaches are currently being explored by many groups. 

Special force fields 

A number of other classical force field forms have been developed to better capture specific be-

havior in atomic systems.  These methods all aim to improve agreement with the true quantum-

mechanical behavior and hence increase quantitative accuracy.  Though we won’t discuss them 

here, we briefly mention some: 

• hydrogen bonding potentials (highly directional interactions) 

• water models (see http://www1.lsbu.ac.uk/water/water_models.html for an impressive 

overview of over 30 current models and their capabilities) 

• systems involving metals and semiconductors (delocalized electrons, pi-bonding, and di-

rectional bonding interactions) 

• ionic solids (coupling between polarizability and repulsions) 

Force field unit systems 

Generally we need to choose an appropriate unit system when setting up a simulation in order 

to capture length, energy, and time scales consistent with reality.  Exceptions are highly simple 

systems with only a very few force field parameters, for which we can perform dimensionless 

simulations (see last section below). For all other systems, common unit systems are represented 

in the following table.  Note that once base units for length, energy, and mass have been speci-

fied, the intrinsic base unit for time necessarily follows.  Temperature is nearly always modeled 

in Kelvin. 

  

http://www1.lsbu.ac.uk/water/water_models.html
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unit system energy unit 𝜖 length unit 𝜎 mass unit 𝑚 time unit 𝜏 = √𝑚𝜎2 𝜖⁄  

atomic like 
AMBER 

kcal/mol Angstrom atomic mass unit 
(1.66 × 10−27 kg) 

48.9 fs 
(4.89 × 10−14 s) 

atomic like 
GROMACS 

kJ/mol nm atomic mass unit 
(1.66 × 10−27 kg) 

ps 
(10−12 s) 

MKS J/mol m kg s 

Interactions with solid surfaces 
To reproduce the effects of a molecules interacting with solid surface or interface, one option 

can be to explicitly include several layers of surface atoms that have interactions with each other 

and with other molecules in the system.  However, if the effects of the structure of the surface 

are not important or the subject of investigation, one can approximate these interactions without 

explicitly including surface atoms.  This approach has the benefit of being far less computationally 

expensive since it replaces the interactions of a molecule with all of the atoms in a surface by a 

single interaction.  This is one form of coarse-graining, which we will discuss in more detail later 

in the course. 

Consider an atom interacting with a surface built from many atoms.  Assume the interaction be-

tween the atom and any surface atom is described by the Lennard-Jones potential. 

 

The total interaction of the atom with the surface is the sum of the interactions with all atoms 

out to infinity in the ±𝑥, ±𝑦, −𝑧 directions (assuming the surface is infinitely thick).  We assume 

the atoms in the surface are smeared out, that is, uniformly distributed with number density 𝜌𝑆.  

Therefore we can compute the total interaction as: 

𝑧 
𝑍 𝑟 = √𝑍2 + 𝑅2 

𝑅 
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𝑢(𝑧) = ∫ ∫ ∫ 𝜌𝑆𝑑𝑍𝑑𝑥𝑑𝑦 × 4𝜖 [(
𝑟

𝜎
)

−12

− (
𝑟

𝜎
)

−6

]
−𝑧

−∞

∞

−∞

∞

−∞

 

= ∫ ∫ ∫ 𝜌𝑆𝑑𝑍𝑅𝑑𝑅𝑑𝜃 × 4𝜖 [(
𝑟

𝜎
)

−12

− (
𝑟

𝜎
)

−6

]
−𝑧

−∞

∞

0

2𝜋

0

 

= ∫ ∫ ∫ 𝜌𝑆𝑑𝑍𝑅𝑑𝑅𝑑𝜃 × 4𝜖 [
𝜎12

(𝑍2 + 𝑅2)6
−

𝜎6

(𝑍2 + 𝑅2)3
]

−𝑧

−∞

∞

0

2𝜋

0

 

=
4𝜋𝜖𝜌𝑆𝜎3

3
[

1

15
(

𝑧

𝜎
)

−9

−
1

2
(

𝑧

𝜎
)

−3

] 

This 9-3 potential describes the interaction of a single atom with a virtual wall.  This is a single-

body term, not a pairwise or higher order interaction, and thus its computational expense scales 

as 𝑁.  Here, the 𝑧 coordinate is given by the 𝑧-component of the atomic position of the atom, 

which corresponds to the wall being located at 𝑧 = 0.  If the wall is at some other location, say 

𝑧0, then the potential becomes 

𝑢(𝑧) =
4𝜋𝜖𝜌𝑆𝜎3

3
[

1

15
(

𝑧 − 𝑧0

𝜎
)

−9

−
1

2
(

𝑧 − 𝑧0

𝜎
)

−3

] 

Note that the potential involves the wall density.  Typical crystalline close-packing densities can 

be used for this parameter, 𝜌𝑆𝜎surface
3 = 0.74, where 𝜎surface gives the size of atoms in the surface 

and can be distinct from the atom-surface interaction parameter 𝜎.  Another way of writing the 

potential above involves the substitutions, 

𝜎0 = (
2

15
)

1 6⁄

𝜎             𝜖0 =
8𝜋

35 2⁄
𝜖𝜌𝑆𝜎3 

such that, 

𝑢(𝑧) =
3√3

2
𝜖0 [(

𝑧

𝜎0
)

−9

− (
𝑧

𝜎0
)

−3

] 

For this formulation of the potential, the minimum energy is −𝜖0 and it occurs at distance 𝑧 =

31 6⁄ 𝜎0. 

Implicit solvation 
In systems of solvated molecules, such as proteins or DNA, the requirement of a very large num-

ber of solvent molecules can drastically increase the simulation expense (which goes as the num-

ber of atoms squared).  When the details of the solvent are not of interest, it is possible to create 

a continuum approximation that correctly reproduces the thermodynamic properties of a sys-

tem.  This is another form of coarse-graining. 
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Statistical-mechanical formulation 

Consider 𝑁 solute atoms (perhaps part of a macromolecule) embedded in a solvent consisting of 

𝑀 solvent atoms.  Assuming pairwise interactions, we can rigorously break the total potential 

energy into solute-solute (X-X), solute-solvent (X-S) and solvent-solvent (S-S) interactions: 

𝑈(𝐫𝑋
𝑁, 𝐫𝑆

𝑀) = 𝑈XX(𝐫𝑋
𝑁) + 𝑈𝑋𝑆(𝐫𝑋

𝑁 , 𝐫𝑆
𝑀) + 𝑈𝑆𝑆(𝐫𝑉

𝑀) 

The total configurational part of the canonical partition function can be written as: 

𝑍 = ∫ ∫ 𝑒−𝛽𝑈XX(𝐫𝑋
𝑁)−𝛽𝑈𝑋𝑆(𝐫𝑋

𝑁,𝐫𝑆
𝑀)−𝛽𝑈𝑆𝑆(𝐫𝑆

𝑀)𝑑𝐫𝑆
𝑀 𝑑𝐫𝑋

𝑁 

This can be factored as: 

𝑍 = ∫ 𝑒−𝛽𝑈XX(𝐫𝑋
𝑁) [∫ 𝑒−𝛽𝑈𝑋𝑆(𝐫𝑋

𝑁,𝐫𝑆
𝑀)−𝛽𝑈𝑆𝑆(𝐫𝑆

𝑀)𝑑𝐫𝑆
𝑀] 𝑑𝐫𝑋

𝑁 

Define 

𝐹𝑆(𝐫𝑋
𝑁; 𝛽) = −𝑘𝐵𝑇 ln ∫ 𝑒−𝛽𝑈𝑋𝑆(𝐫𝑋

𝑁,𝐫𝑆
𝑀)−𝛽𝑈𝑆𝑆(𝐫𝑆

𝑀)𝑑𝐫𝑆
𝑀 

This is the free energy of solvation for a particular solute conformation 𝐫𝑋
𝑁.  Notice that this free 

energy depends on the temperature.  We can now rigorously rewrite the total partition function 

as: 

𝑍 = ∫ 𝑒−𝛽𝑈𝑋𝑋(𝐫𝑋
𝑁)−𝛽𝐹𝑆(𝐫𝑋

𝑁;𝛽)𝑑𝐫𝑋
𝑁 

This becomes an integral over the solute conformations only.  Thus, we can define an effective 

potential energy function for the system, in which we have averaged out the solvent degrees of 

freedom: 

𝑈eff(𝐫𝑁) = 𝑈(𝐫𝑁) + 𝐹𝑆(𝐫𝑁; 𝛽) 

Here, for simplicity we removed the X subscript from the solute degrees of freedom. 

The challenge is to determine a good functional form for 𝐹𝑆(𝐫𝑁; 𝛽).  If we find an accurate one, 

by the derivation above, our potential will rigorously return the same thermodynamic properties 

as a fully atomic treatment of the solvent.  Any kinetic properties associated with 𝑈eff, however, 

will be different since now we have averaged away any solvent degrees of freedom that would 

contribute to a viscosity.   
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Simple approaches to continuum solvents 

The simplest approach is to assume the solvent is a continuous dielectric medium with a constant 

dielectric.  In this case, all solute partial charge interactions will be reduced relative to the vacuum 

Coulomb case: 

𝑢(𝑟𝑖𝑗) =
1

4𝜋𝜖0𝜖

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 

Here, 𝜖 is the dielectric constant for the medium of interest.  For water, 𝜖 = 80.  For vacuum, 

𝜖 = 1. 

A slightly better approximation that interpolates between a dielectric of 𝜖 = 1 at short distances 

and 𝜖 = 𝜖solvent at large distances is a distance-dependent dielectric: 

𝑢(𝑟𝑖𝑗) =
1

4𝜋𝜖0𝜖eff(𝑟𝑖𝑗)

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 

𝜖eff(𝑟) = 𝜖solvent −
𝜖solvent − 1

2
(𝑟2𝑆2 + 2𝑟𝑆 + 2)𝑒−𝑟𝑆 

Here, 𝑆 is a parameter, typically between 0.15 Å-1 and 0.3 Å-1. 

Another approximate form suitable for use in dilute electrolyte solutions (systems with mobile 

charges) is the screened Coulomb potential: 

𝑢(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝜖𝑟𝑖𝑗
𝑒

−
𝑟𝑖𝑗

𝜆𝐷  

Here, 𝜆𝐷 is the Debye length, dependent on the salt concentration of the solution, and 𝜖 is the 

dielectric constant of the medium. 

None of these methods, however, is particularly accurate at reproducing the net effect of the 

potential 𝑈eff in the general case.  What they neglect is the complex, multi-body rearrangement 

of the solvent in response to the solute.  This effect is typically dominated by electrostatic inter-

actions between the two. 

More accurate approaches 

A common approach to modeling 𝐹𝑆 is to split it into several parts for which good analytical ap-

proximations can be made: 

𝐹𝑆 = 𝐹elec + 𝐹vdW + 𝐹cav 
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This is an approximate separation into interactions between the solute and solvent involving: 

electrostatic, attractive van der Waals, and repulsive or cavity interactions.  Typically for many 

macromolecules, the cavity term can be neglected and the van der Waals interactions be suc-

cessfully modeled using a surface area approach: 

𝐹nonelec(𝐫𝑁) = 𝐹vdW + 𝐹cav 

≈ 𝛾𝐴SAS(𝐫𝑁) 

Here, 𝛾 is the surface tension of the molecular boundary with the solvent. It is typically treated 

as a universal constant, although some approaches choose a different value of surface tension 

for each atom type at the boundary.   

𝐴SAS is the solvent-accessible surface area.  It is the area one would compute by tracing out the 

surface formed by rolling a solvent molecule over the solute(s).  The surface area depends on the 

conformation of the solute(s) and there exist fast, approximate methods for computing it. 

The electrostatic component is typically treated by considering the solvent to be a dielectric de-

scribed by continuum electrostatics.  The fundamental equation that must be solved for the sol-

vent dielectric is the Poisson-Boltzmann equation: 

∇ ⋅ 𝜖(𝐫)∇𝜙(𝐫) − 𝜅′ sinh[𝜙(𝐫)] = −4𝜋𝜌(𝐫) 

Here, 𝜖 is the dielectric constant, which varies as a function of position in space.  𝜙 is the electro-

static potential and also varies in space.  𝜅′ is a constant that depends on the ionic strength of 

the solution.  𝜌 gives the charge density, which can be extracted from the atomic partial charges 

on the solute. 

How does this equation work?  In broad terms, 

1. The dielectric 𝜖(𝐫) is assumed to be equal to 𝜖solute everywhere inside the solute (often 

1) and equal to 𝜖solvent everywhere outside the solute (e.g., beyond the solvent accessible 

surface area).  In practice, the transition is often made continuous over the solute bound-

ary for numerical stability. 

2. The charge density 𝜌(𝐫) is constructed from the atomic charges in the solute.  In practice, 

these charges are often smeared over a grid in space. 

3. One then calculates the electrostatic potential 𝜙(𝐫) everywhere in space by solving this 

nonlinear, second-order differential equation.  This is the hard and expensive part. 

4. With the solution for 𝜙(𝐫), one can compute the electrostatic component of the solvation 

free energy from a sum over partial charges in the solute: 𝐹elec =
1

2
∑ 𝑞𝑖𝜙(𝐫𝑖)𝑖  
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Solutions to the Poisson-Boltzmann approximation often give good estimates of the electrostatic 

component of the solvation free energy.  The quality of these results relies on the extent to which 

the solvent behaves like a dielectric continuum.   In cases where molecular granularity is im-

portant—for example, in which a single water molecule bridges two ion’s interaction—this ap-

proach fails. 

The Poisson-Boltzmann equation is fairly computationally demanding to solve.  There are several 

approximate solutions that work well; however, a complete solution needs to be found every 

time the conformation of the solute changes.  

Tas been much interest in using fast, highly approximate solutions to the PB equation that don’t 

require solution of a differential equation.  One that has gained much popularity is the so-called 

Generalized Born method.  In this approach,  

𝐹elec ≈ −
1

4𝜋𝜖0
(

1

𝜖solute
−

1

𝜖solvent
) ∑ ∑

𝑞𝑖𝑞𝑗

√𝑟𝑖𝑗
2 + 𝑎𝑖𝑎𝑗𝑒−𝑟𝑖𝑗

2 4𝑎𝑖𝑎𝑗⁄

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

Here, the summations proceed over all pairwise interactions of partial charges in the solute.  This 

equation bears some resemblance to the Coulomb expression, most notably except for the 

square root term.  The variables 𝑎𝑖 are called the Born radii of each atom in the solute.  Generally 

speaking, they measure the radius from an atom to the solute-solvent boundary, and they must 

be computed as a function of solute conformation. 

Generalized Born models are most frequently used in the simulation of large solvated biomole-

cules, although they have seen a decline in popularity in the past decade given hardware ad-

vances that allow for explicit water modeling.  While the computation of 𝐹elec is typically the most 

expensive calculation in the evaluation of the potential energy of these systems, the GB approach 

gives significant time savings relative to including large numbers of explicit water molecules. 

Keep in mind that the PB and GB methods must be coupled with an approach to determine the 

nonelectrostatic component of the solvation free energy.  The complete approaches that we 

have discussed here are termed the Poisson-Boltzmann Solvent Accessible Surface Area 

Method (PBSA): 

𝑈eff(𝐫𝑁) = 𝑈(𝐫𝑁) + 𝛾𝐴SAS(𝐫𝑁) + 𝐹elec,PB(𝐫𝑁) 

and the Generalized Born Solvent Accessible Surface Area Method (GBSA): 

𝑈eff(𝐫𝑁) = 𝑈(𝐫𝑁) + 𝛾𝐴SAS(𝐫𝑁) + 𝐹elec,GB(𝐫𝑁) 
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In both cases, 𝑈(𝐫𝑁) simply corresponds to the kind of semi-empirical force field we described 

earlier for the intramolecular interactions of atoms in the solute with each other. 

Simpler perspectives 

Simplified and coarse-grained models 

Oftentimes, we are not interested in quantitative accuracy and do not need a highly detailed 

force field.  We can examine a large range of behavior using very simplified models.  This includes: 

• scaling laws (e.g., dependence of properties on system size, chain length, molecular size 

or energy scales) 

• microscopic mechanisms (e.g., of diffusion, binding, or conformational changes) 

• relative magnitudes of different driving forces (e.g., electrostatic, dispersive, excluded 

volume/repulsive, hydrogen bonding, hydrophobic interactions) 

• microscopic structure (e.g., conformational fluctuations, molecular packing, structure in 

bulk liquids, degree of geometric ordering) 

• functional form of the dependence of these and other properties on state conditions (e.g., 

temperature, pressure, density, composition) 

The simplified models themselves can be used to rationalize many universal behaviors in molec-

ular systems.  For example, simple bead-spring models are able to capture a huge array of poly-

mer thermodynamics.  Similarly, very simple Lennard-Jones type potentials can describe many 

features of critical phenomena for a wide range of single- and multi-component liquid-state sys-

tems. 

There is an important philosophy here that goes well beyond practical simulation needs.  To de-

velop a basic physical understanding of a particular system, we would like to identify a minimal 

model that best describes the basic qualitative features of its behavior.   

In that respect, we ultimately want to pick the simplest model possible, use simulations to eval-

uate its behavior, and determine by comparison with experiment which properties are correctly 

reproduced and which are not.  When then begin systematically building greater detail into the 

model, evaluating at each point which new properties improve agreement.  By taking such a hi-

erarchical approach, we can pinpoint exactly which aspects of the physics explain various fea-

tures of a system’s behavior, in terms of driving forces and interactions. 
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What are simple models?  These are often called coarse-grained or reduced models.  They involve 

large pseudoatom sites that are designed to represent combined groups of multiple atoms.  For 

example, a bead-spring polymer model might involve one pseudoatom per monomer. 

Basic considerations to make when constructing such models is to ask: 

• What degrees of freedom need to be included?  In other words, what is the basic chemical 

architecture of the molecules that drives the relevant physics?  For example, is it desired 

to capture motions along a polymer backbone?  If so, one needs several large pseudoatom 

sites along it.  If the motions of side-chain groups hanging off of the backbone affect the 

physics, one will have to include pseudoatoms for those as well. 

• What are the dominant length scales in the system?  Excluded volume interactions will 

have to be modeled with repulsive terms in the pairwise energy functions for these. 

• What are the dominant energy scales in the system?  Will a Lennard-Jones functionality 

(repulsion + attraction) suffice to model these?  Are other functionalities more appropri-

ate?  A hard-sphere term or a square-well model might also be appropriate here, although 

discrete potentials can require special molecular dynamics methods if kinetics are to be 

investigated. 

• How many different kinds of interaction potentials and pseudoatom types are needed?  

Ultimately, one wants to pick a minimal number of types that will allow an understanding 

of the basic physics. 

Dimensional analysis 

With highly simple models that involve only a very few length and energy scales, it is sometimes 

possible to perform simulations in reduced, dimensionless parameters.  This approach is should 

NOT be used for simulations of detailed atomic-scale systems in which multiple atom types and 

thus many parameters are present. 

Consider an atomic liquid modeled by the Lennard-Jones interaction.  Such a model might repre-

sent argon or other noble gasses at a quantitative level, and many other molecular liquids at a 

qualitative level.  Here, there are 𝑁 atomic molecules.  The total potential energy is: 

𝑈(𝐫𝑁) = ∑ 4𝜖 [(
𝑟𝑖𝑗

𝜎
)

−12

− (
𝑟𝑖𝑗

𝜎
)

−6

]

𝑖<𝑗

 

Imagine that we simulate this system in a cubic box of length 𝐿 (volume 𝑉) at a given temperature 

𝑇.   If we let the fundamental length unit in our system be 𝜎 and the fundamental energy unit be 

𝜖, we can rewrite the potential in dimensionless units as: 
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𝑈∗(𝐬𝑁) ≡
𝑈

𝜖
 

= ∑ 4[𝑠𝑖𝑗
−12 − 𝑠𝑖𝑗

−6]

𝑖<𝑗

 

where 𝐬𝑁 now gives the dimensionless reduced positions: 

𝐬𝑁 =
𝐫𝑁

𝜎
 

Notice that the reduced potential no longer contains the parameters 𝜖 and 𝜎.  This enables us to 

simulate a generic Lennard-Jones system in reduced parameter space.  That is, we perform a 

simulation where our positions are the reduced 𝐬𝑁 and our energies are 𝑈∗. 

We can define reduced simulation conditions.  The reduced temperature: 

𝑇∗ =
𝑘𝐵𝑇

𝜖
 

The reduced volume: 

𝑉∗ =
𝑉

𝜎3
 

The reduced number density (number of molecules per volume, 𝑁/𝑉): 

𝜌∗ = 𝜌𝜎3 

The reduced pressure: 

𝑃∗ = 𝑃
𝜎3

𝜖
 

To non-dimensionalize any quantities involving time, such as a diffusivity or viscosity, we need to 

incorporate the mass 𝑚 of each of the particles.  The reduced time is: 

𝑡∗ = 𝑡√
𝜖

𝑚𝜎2
 

The reduced velocities and momenta are: 

𝑝∗ = 𝑝√
1

𝑚𝜖
     𝑣∗ = 𝑣√

𝑚

𝜖
 

The reduced kinetic energy is: 
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𝐾∗ =
𝐾

𝜖
 

=
1

2
∑|𝐩𝑖

∗|2

𝑖

=
1

2
∑|𝐯𝑖

∗|2

𝑖

 

The reduced self-diffusivity is: 

𝐷∗ = 𝐷√
𝑚

𝜖𝜎2
 

The advantage of the dimensionless approach is the following.  We can map out the entire be-

havior of this system in dimensionless state space (e.g., as a function of 𝑇∗ and 𝜌∗) without spec-

ifying values of the parameters 𝜖 and 𝜎.  Our simulation results can then be scaled to specific 

values of 𝜖 and 𝜎 for a particular system or set of systems using the relations above.   

If our potential contained three parameters, we would have to evaluate our dimensionless sys-

tem as a function of three different state conditions.  Beyond three or four parameters, however, 

this approach grows unwieldy and is not particularly informative. 

Another example 

Generally, there are only three scales that can be chosen in the system: a length scale 𝝈𝟎, an 

energy scale 𝝐𝟎, and a mass scale 𝒎𝟎.  The mass scale does not affect any of the thermodynamic 

properties, but rather defines the time scale via the relation: 

𝑡0 = √
𝑚0𝜎0

2

𝜖0
 

Once the energy and length scales are chosen, there is a unique form of the dimensionless inter-

action potential.   

It is important to choose scales that are representative of the length and energy scales that dom-

inate the physics of interest in the system.  Consider a system of particles that interacts through 

a screened Coulomb potential plus a soft-sphere repulsion: 

𝑢(𝑟𝑖𝑗) = 𝜖𝑆𝑆 (
𝑟𝑖𝑗

𝜎𝑆𝑆
)

−12

+
1

4𝜋𝜖0𝜖

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑒

−
𝑟𝑖𝑗

𝜆𝐷  

If the charges are specified in terms of the unit electron charge 𝑒0, then this expression becomes 

𝑢(𝑟𝑖𝑗) = 𝜖𝑆𝑆 (
𝑟𝑖𝑗

𝜎𝑆𝑆
)

−12

+
𝑒0

2

4𝜋𝜖0𝜖

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑒

−
𝑟𝑖𝑗

𝜆𝐷  
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To non-dimensionalize we first choose a length scale.  There are two in this system, the soft-

sphere diameter 𝜎𝑆𝑆 and the Debye length 𝜆𝐷.  The dimensionless density and volume fraction 

of our system is more naturally expressed in terms of the particle diameters, so we typically 

choose the particle size parameter as the length scale: 

𝑟𝑖𝑗
∗ =

𝑟𝑖𝑗

𝜎𝑆𝑆
     ;      𝑉∗ =

𝑉

𝜎𝑆𝑆
3  

The potential then becomes: 

𝑢(𝑟𝑖𝑗) = 𝜖𝑆𝑆(𝑟𝑖𝑗
∗ )−12 +

𝑒0
2

4𝜋𝜖0𝜖𝜎𝑆𝑆

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
∗ 𝑒

−𝑟𝑖𝑗
∗ (

𝜎𝑆𝑆
𝜆𝐷

)
 

We can now define two new parameters, 

𝜖𝐶𝑜𝑢𝑙 =
𝑒0

2

4𝜋𝜖0𝜖𝜎𝑆𝑆
 

𝜆𝐷
∗ =

𝜆𝐷

𝜎𝑆𝑆
 

The latter is the Debye length expressed in units of particle diameter.  Thus, 

𝑢(𝑟𝑖𝑗) = 𝜖𝑆𝑆(𝑟𝑖𝑗
∗ )−12 + 𝜖𝐶𝑜𝑢𝑙

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
∗ 𝑒

−𝑟𝑖𝑗
∗ (

𝜎𝑆𝑆
𝜆𝐷

)
 

Our second choice is the energy scale in the potential.  We have two from which we can choose: 

𝜖𝑆𝑆 and 𝜖𝐶𝑜𝑢𝑙.  Typically, we want to pick the one that will dominate the physical interactions of 

our system.  Here, the soft-sphere term is relatively insensitive to 𝜖𝑆𝑆 because the exponent is so 

great.  Consider the limit that the repulsive exponent becomes negative infinity; in this case, this 

term has the behavior: 

lim
𝑛→∞

𝜖𝑆𝑆(𝑟𝑖𝑗
∗ )

−𝑛
= {

∞ 𝑟𝑖𝑗
∗ < 1

0 𝑟𝑖𝑗
∗ > 1

 

In other words, we recover the hard-sphere interaction in this limit and 𝜖𝑆𝑆 becomes completely 

irrelevant to the system behavior. 

As a result, we choose 𝜖𝐶𝑜𝑢𝑙 as the energy scale in the system.  This means that 

𝑢∗(𝑟𝑖𝑗
∗ ) =

𝑢(𝑟𝑖𝑗 𝜎𝑆𝑆⁄ )

𝜖𝐶𝑜𝑢𝑙
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𝑇∗ =
𝑘𝐵𝑇

𝜖𝐶𝑜𝑢𝑙
 

The dimensionless interaction potential is thus: 

𝑢∗(𝑟𝑖𝑗
∗ ) =

𝜖𝑆𝑆

𝜖𝐶𝑜𝑢𝑙
(𝑟𝑖𝑗

∗ )−12 +
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
∗ 𝑒−𝑟𝑖𝑗

∗ /𝜆𝐷
∗

 

We now have two dimensionless parameters that we can tune in our system in addition to the 

reduced temperature 𝑇∗ and density 𝜌∗: 

𝜆𝐷
∗     ;     (

𝜖𝑆𝑆

𝜖𝐶𝑜𝑢𝑙
) 

Since we might expect our system behavior to be relatively insensitive to 𝜖𝑆𝑆 for large negative 

values of the repulsive exponent, we might set 

𝜖𝑆𝑆

𝜖𝐶𝑜𝑢𝑙
≈ 1 

And a simpler potential would be 

𝑢∗(𝑟𝑖𝑗
∗ ) = (𝑟𝑖𝑗

∗ )−12 +
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
∗ 𝑒−𝑟𝑖𝑗

∗ /𝜆𝐷
∗

 

Simulations in the canonical ensemble could now be performed for different values of 𝑇∗, 𝜌∗, 

and 𝜆𝐷
∗  to map out the complete behavior of this simple system. 


