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Computing properties in simulations ChE210D 

Today's lecture: how to compute thermodynamic properties like the temperature 

and pressure, and kinetic properties like the diffusivity and viscosity, from molec-

ular dynamics and other simulations 

Equilibration and production periods 
Often we start our simulation with initial velocities and positions that are not representative of 

the state condition of interest (e.g., as specified by the temperature and density).  As such, we 

must equilibrate our system by first running the simulation for an amount of time that lets it 

evolve to configurations representative of the target state conditions.  Once we are sure we have 

equilibrated, we then perform a production period of simulation time that we used to study the 

system and/or compute properties at the target state conditions. 

How do we know if we have well-equilibrated our system?  One approach is to monitor the time-

dependence of simple properties, like the potential energy or pressure.  The following is taken 

from a 864-particle molecular dynamics simulation of the Lennard-Jones system.  Initially, the 

atoms are placed on an fcc lattice and the velocities are sampled from a 𝑇 = 2.0 (reduced units) 

distribution.  The crystal melts to a liquid phase. 

 

For the above system, an equilibration time might be ~0.2 time units.  After equilibration, many 

quantities will still fluctuate—and should fluctuate if we are correctly reproducing the properties 

of the statistical mechanical ensemble of interest (here, the NVE ensemble). 
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At a basic level, we want the equilibration time to be at least as long as the relaxation time of 

our system, broadly defined here as the largest time scale for molecular motion. 

One approach for estimating the relaxation time is to use diffusion coefficients or other measures 

of molecular motion.  In a bulk liquid, for example, we might think of a relaxation time scale as 

that corresponding for one molecule to move a distance equal to one molecular diameter (𝜎).  If 

we know the diffusion coefficient 𝐷, we can compute a relaxation time 𝜏relax from 

𝜏relax ∼
𝜎2

𝐷
 

Thus our equilibration time should at least exceed 𝜏relax several times over.  Notice that 𝐷 can 

vary with state conditions (e.g., temperature), and this should be taken into account if we per-

form multiple simulations at different conditions. 

Simple estimators 
What kinds of properties or observables can we compute from the production period of our sim-

ulation?  The following discusses some variables commonly of interest.  Each of these involves 

averages over the simulation duration. 

Energies 

The average kinetic and potential energies in our simulation are given by: 

⟨𝐾⟩ =
1

𝑛
∑ 𝐾𝑖         ⟨𝑈⟩ =

1

𝑛
∑ 𝑈𝑖 

where we sum 𝑛 independent samples of the instantaneous kinetic and potential energies at 

different time points in the simulation.  Remember, the statistical behavior of these sums shows 

that the error in our estimate goes as 𝑛−1 2⁄ . 

Temperature 

There is no rigorous microscopic definition of the temperature in the microcanonical ensemble.  

Instead, we must use macroscopic thermodynamic results to make a connection here.  Namely, 

1

𝑇
= (

𝜕𝑆

𝜕𝐸
)

𝑉.𝑁
= 𝑘𝐵 (

𝜕 ln Ω

𝜕𝐸
)

𝑉.𝑁
 

It can be shown (using the equipartition theorem) that the average kinetic energy relates to the 

temperature via: 
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⟨𝐾⟩ = 𝑛DOF

𝑘𝐵𝑇

2
 

Here, 𝑛DOF is the number of degrees of freedom in the system.  For a system of 𝑁 atoms that 

conserves net momentum, 

𝑛DOF = 3𝑁 − 3 

However, for large enough systems the subtraction of the 3 center of mass degrees of freedom 

has little effect since it is small relative to 3𝑁.  If rigid bonds are present in our system (treated 

in a later lecture), we also lose one degree of freedom per each.  

Thus we can make a kinetic estimate of the temperature: 

𝑇 =
2⟨𝐾⟩

𝑘𝐵𝑛DOF
 

Note that we can define, operationally, an instantaneous kinetic temperature: 

𝑇inst =
2𝐾

𝑘𝐵𝑛DOF
       𝑇 = ⟨𝑇inst⟩ 

Because 𝐾 fluctuates during a simulation, 𝑇inst also fluctuates.  Note that this is an estimator of 

the temperature in that we must perform an average to compute it.  The same ideas about inde-

pendent samples also apply here. 

Although it is not as frequently used, we can also compute a configurational estimate of the 

temperature [Butler, Ayton, Jepps, and Evans, J. Chem. Phys. 109, 6519 (1998)]: 

𝑘𝐵𝑇config = ⟨
𝐟𝑁 ⋅ 𝐟𝑁

−∇ ⋅ 𝐟𝑁
⟩ 

This estimate depends on the forces and their derivatives (via the denominator).  Since the forces 

depend only on the atomic positions, and not momenta, this is termed a configurational esti-

mate.  We must also average over multiple configurations and correlation times in order to com-

pute this temperature accurately.  Both the kinetic and configurational temperatures are equal 

in the limit of infinite simulation time and equilibrium. 

Velocity rescaling 

Typically we want to perform a simulation at a specified temperature.  For an NVE simulation, 

this means that we want to adjust the total energy such that the average temperature is equal 

to the one we specify.  We can adjust the total energy easily by changing the momenta. 
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The most common approach is to rescale the velocities at periodic time intervals based on the 

deviation of the instantaneous temperature from our set point temperature.  This is a form of a 

thermostat.  If we rescale all of the velocities by: 

𝐯new
𝑁 = 𝜆𝐯𝑁 

We want: 

𝑇 =
∑ 𝑚𝑖𝜆

2|𝐯𝑖|
2

𝑘𝐵𝑛DOF
 

where 𝑇 is our setpoint temperature.  Solving for 𝜆,  

𝜆 = √
𝑘𝐵𝑇𝑛DOF

∑ 𝑚𝑖|𝐯𝑖|2
 

Typically this rescaling is not done at every time step but only periodically (e.g., every 100-1000 

time steps).  Technically speaking, rescaling should be performed at a frequency related to the 

velocity autocorrelation time, discussed below. 

One problem with velocity rescaling is that it affects the dynamics of the simulation run and is an 

artificial interruption to Newton’s equations of motion.  In particular, velocity rescaling means 

that the total energy 𝐸 is no longer conserved, and that transport properties cannot be accurately 

computed.  An alternative and perhaps better approach is: 

1. First equilibrate the system using periodic velocity rescaling at the desired temperature. 

2. Run a short production phase with velocity rescaling.  Due to the rescaling, 𝐸 will fluctu-

ate.  Compute an average total energy ⟨𝐸⟩. 

3. Turn off velocity rescaling. 

4. Rescale the momenta such that the total energy equals ⟨𝐸⟩.  That is, given the current 

configuration with potential energy 𝑈, rescale the momenta and kinetic energy 𝐾 to sat-

isfy 𝐾 = ⟨𝐸⟩ − 𝑈.   

5. The simulation can then be evolved in time normally (NVE dynamics) and should average 

to the desired temperature, to within the errors in determining ⟨𝐸⟩. 

There are more sophisticated ways of performing temperature regulation but the above ap-

proach is perhaps the simplest.  Moreover, this approach preserves the true NVE dynamics of the 

system, the only truly correct dynamics. 



© M. S. Shell 2022 5/18 last modified 11/30/2022 

Pressure 

To compute the pressure, we often use the virial theorem: 

𝑃 =
1

3𝑉
⟨3𝑁𝑘𝐵𝑇 + ∑ 𝐟𝑖 ⋅ 𝐫𝑖⟩ 

=
1

3𝑉
⟨2𝐾 + ∑ 𝐟𝑖 ⋅ 𝐫𝑖⟩ 

This expression is derived for the canonical ensemble (constant NVT), but it is often applied to 

molecular dynamics simulations regardless (NVE).  For large enough systems, the difference be-

tween the two is very small. 

The expression above is not generally used for systems of pairwise-interacting molecules subject 

to periodic boundary conditions.  Instead, we can rewrite the force sum: 

∑ 𝐟𝑖 ⋅ 𝐫𝑖

𝑖

= ∑ (∑ 𝐟𝑖𝑗

𝑗

) ⋅ 𝐫𝑖

𝑖

 

= ∑ 𝐟𝑖𝑗 ⋅ 𝐫𝑖

𝑖,𝑗

 

= ∑ 𝐟𝑖𝑗 ⋅ 𝐫𝑖

𝑖<𝑗

+ ∑ 𝐟𝑖𝑗 ⋅ 𝐫𝑖

𝑖>𝑗

 

= ∑ 𝐟𝑖𝑗 ⋅ 𝐫𝑖

𝑖<𝑗

+ ∑ 𝐟𝑗𝑖 ⋅ 𝐫𝑗

𝑖<𝑗

 

= ∑ 𝐟𝑖𝑗 ⋅ (𝐫𝑖 − 𝐫𝑗)

𝑖<𝑗

 

= − ∑
𝑑𝑢(𝑟𝑖𝑗)

𝑑𝑟
𝑟𝑖𝑗

𝑖<𝑗

 

Thus, 

𝑊 ≡ − ∑
𝑑𝑢(𝑟𝑖𝑗)

𝑑𝑟
𝑟𝑖𝑗

𝑖<𝑗

 

𝑃 =
1

3𝑉
⟨2𝐾 + 𝑊⟩ 

Here, 𝑊 is called the virial.  Notice that 𝑊 involves a sum of pairwise interactions.  We therefore 

need to compute it in our pairwise loop, alongside the energies.  Oftentimes, the calculations we 

use for the pairwise energies can be re-used in the loop.  Take the Lennard-Jones system for 

example, in dimensionless units: 



© M. S. Shell 2022 6/18 last modified 11/30/2022 

𝑈 = ∑ 4(𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)

𝑖<𝑗

 

𝑊 = ∑ 24(2𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)

𝑖<𝑗

 

For systems involving rigid bonds (discussed later), the forces acting to hold the bonds rigid must 

be computed and added to the overall virial. 

Heat capacity 

One way we might measure the heat capacity is to perform multiple simulations at different tem-

peratures and then numerically estimate  

𝐶𝑉 =
𝑑𝐸

𝑑𝑇
≈

𝐸(𝑇 + Δ𝑇) − 𝐸(𝑇)

Δ𝑇
 

Alternatively, we can estimate 𝐶𝑉 from a single simulation using energy fluctuations.  For the 

canonical ensemble (and approximately the microcanonical one), we can write: 

𝐶𝑉 =
𝑑(𝐾 + 𝑈)

𝑑𝑇
 

=
𝑛DOF𝑘𝐵

2
+

𝑑𝑈

𝑑𝑇
 

=
𝑛DOF𝑘𝐵

2
+

⟨𝑈2⟩ − ⟨𝑈⟩2

𝑘𝐵𝑇2
 

=
𝑛DOF𝑘𝐵

2
+

𝜎𝑈
2

𝑘𝐵𝑇2
 

That is, we can measure the heat capacity from the variance in the potential energy.  The last 

term in this equation is often termed the configurational heat capacity. 

Other quantities 

It is relatively easy to measure the enthalpy, which stems from a mechanical average: 

𝐻 = 𝑈 + 𝑃𝑉 

On the other hand, it is very challenging to compute entropic or free-energetic quantities, like 

𝑆, 𝐴, 𝐺, 𝜇. We will discuss advanced simulation approaches for determining these quantities later 

in the course.  Unlike the quantities we have studied so far, free-energetic quantities require 

computation of distributions of simulation observables, not just averages of them. 



© M. S. Shell 2022 7/18 last modified 11/30/2022 

Statistics of averages 

Basic averages 

Consider the computed average potential energy of a simulation.  For a production period of 𝑛 

MD time steps, we could compute 

𝑈̅ =
1

𝑛
∑ 𝑈𝑖

𝑛

𝑖=1

 

In this section, we will use an overbar to indicate an estimate deduced from a single, finite-dura-

tion simulation.  It will be more informative for now if we neglect the discretized nature of our 

solutions to the dynamic trajectories and instead represent this as an integral: 

𝑈̅ =
1

𝑡tot
∫ 𝑈(𝑡)𝑑𝑡

𝑡tot

0

 

This expression isn’t specific to the potential energy.  For any observable 𝐴 for which we want to 

compute the average, 

𝐴̅ =
1

𝑡tot
∫ 𝐴(𝑡)𝑑𝑡

𝑡tot

0

 

These averages of observables correspond to finite-duration simulations.  There are two ways in 

which we might expect to see errors in our results: 

• The simulation time is not long enough to reduce statistical error in 𝐴̅.  Only in the limit 

𝑡tot → ∞ will we rigorously measure the true, statistical-mechanical average that we ex-

pect from thermodynamics.  In practice, we really only need to take this integral to a 

moderate number of correlation times of the property 𝐴, which we discuss below. 

• The simulation is not at equilibrium.  In this case, we need to extend the equilibration 

period before computing this integral. 

In what follows, we will use the following notational definitions.  Let 

𝐴̅ =
1

𝑡tot
∫ 𝐴(𝑡)𝑑𝑡

𝑡tot

0

             ⟨𝐴⟩ = lim
𝑡tot→∞

1

𝑡tot
∫ 𝐴(𝑡)𝑑𝑡

𝑡tot

0

 

That is, 𝐴̅ denotes a simulation average, while ⟨𝐴⟩ denotes the true statistical-mechanical equi-

librium average for 𝐴 that we would expect in the limit of infinite simulation time, in which our 

system is at equilibrium. 
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Correlation times 

Assume we can perform a simulation that initially is fully equilibrated at the desired equilibrium 

conditions.  If we were to perform multiple trials or runs of our simulation, we would get an 

estimate for 𝐴̅ that would be different each time because of the finite length for which we per-

form them.   We could obtain a number of measurements from different runs: 

𝐴̅1, 𝐴̅2, 𝐴̅3, … 

We want to know what the expected variance of 𝐴̅ is, relative to the true value ⟨𝐴⟩.  This is the 

squared error in our measurement of the average using finite simulation times: 

𝜎𝐴̅
2 = ⟨(𝐴̅ − ⟨𝐴⟩)2⟩ 

Here, the brackets indicate an average over an infinite number of simulations we perform.  We 

can simplify this expression: 

𝜎𝐴̅
2 = ⟨𝐴̅2⟩ − ⟨𝐴⟩2 

= ⟨
1

𝑡tot
2 [∫ 𝐴(𝑡)𝑑𝑡

𝑡tot

0

] [∫ 𝐴(𝑡)𝑑𝑡
𝑡tot

0

]⟩ − ⟨𝐴⟩2 

= ⟨
1

𝑡tot
2 ∫ ∫ 𝐴(𝑡)𝐴(𝑡′)𝑑𝑡′

𝑡tot

0

𝑑𝑡
𝑡tot

0

⟩ − ⟨𝐴⟩2 

=
1

𝑡tot
2 ∫ ∫ ⟨𝐴(𝑡)𝐴(𝑡′)⟩𝑑𝑡′

𝑡tot

0

𝑑𝑡
𝑡tot

0

− ⟨𝐴⟩2 

In the last line, we moved the average into the integrand.  

In the integrals, we have a double summation of all 𝐴(𝑡)𝐴(𝑡′) pairs at different time points.  For 

two specific time points, 𝑡 = 𝑡1 and 𝑡′ = 𝑡2, the identical products 𝐴(𝑡1)𝐴(𝑡2) and 𝐴(𝑡2)𝐴(𝑡1) 

both appear as the integrand variables pass over them.  This enables us to consider only the 

unique time point pairs of 𝑡, 𝑡′for which 𝑡′ < 𝑡, multiplying by two: 

𝜎𝐴̅
2 =

2

𝑡tot
2 ∫ ∫ ⟨𝐴(𝑡)𝐴(𝑡′)⟩𝑑𝑡′

𝑡

0

𝑑𝑡
𝑡tot

0

− ⟨𝐴⟩2 

We can also simplify things because Newton’s equations are symmetric in time.  First, the average 

⟨𝐴(𝑡)𝐴(𝑡′)⟩ 

should not depend on the absolute value of the times, but only their relative value, because at 

equilibrium we can look at our simulation at any two relative points in time and we would expect 

to get the same average. Therefore, we can shift this average in time by – 𝑡′: 
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𝜎𝐴̅
2 =

2

𝑡tot
2 ∫ ∫ ⟨𝐴(𝑡 − 𝑡′)𝐴(0)⟩𝑑𝑡′

𝑡

0

𝑑𝑡
𝑡tot

0

− ⟨𝐴⟩2 

Since the simulations start at equilibrium, we have  

⟨𝐴⟩ = ⟨𝐴(0)⟩ 

⟨𝐴2⟩ = ⟨𝐴(0)2⟩ 

𝜎𝐴
2 = ⟨𝐴2⟩ − ⟨𝐴⟩2 = ⟨𝐴(0)2⟩ − ⟨𝐴(0)⟩2 

Notice that 𝜎𝐴
2 (without overbar on the 𝐴) gives the equilibrium variance of 𝐴, or that expected 

from a single, long equilibrium simulation.  It is different from 𝜎𝐴̅
2, which estimates the variance 

in the average 𝐴̅, or the squared error in the average we compute from run to run.  We expect 

𝜎𝐴
2 to be finite, constant, and characteristic of the equilibrium fluctuations, while we expect 𝜎𝐴̅

2 

to approach zero as we make our simulations longer and longer. 

With these ideas, we can rewrite this expression as: 

𝜎𝐴̅
2 =

2𝜎𝐴
2

𝑡tot
2 [∫ ∫ 𝐶𝐴(𝑡 − 𝑡′)𝑑𝑡′

𝑡

0

𝑑𝑡
𝑡tot

0

] 

Here, 𝐶𝐴 is the time autocorrelation function for 𝐴.  Its formal definition is 

𝐶𝐴(𝑡) ≡
⟨𝐴(𝑡)𝐴(0)⟩ − ⟨𝐴(0)⟩⟨𝐴(0)⟩

⟨𝐴(0)𝐴(0)⟩ − ⟨𝐴(0)⟩⟨𝐴(0)⟩
 

=
⟨𝐴(𝑡)𝐴(0)⟩ − ⟨𝐴(0)⟩⟨𝐴(0)⟩

𝜎𝐴
2  

Physically, it measures how correlated the variable 𝐴 is at some time 𝑡 with its value at initial 

time 0.  By the definition above we see that 

𝐶𝐴(𝑡 = 0) = 1        𝐶𝐴(𝑡 → ∞) = 0 

Schematically, the correlation function may look something like this: 
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Autocorrelation functions decay with time, since at long times, a measurement is uncorrelated 

from its value at earlier times.  We can define an autocorrelation time as: 

𝜏𝐴 ≡ ∫ 𝐶𝐴(𝑡)𝑑𝑡
∞

0

 

If the total simulation length is longer than this time, 𝑡tot ≫ 𝜏𝐴, the expression for the variance in 

𝐴̅ can be rewritten approximately as: 

𝜎𝐴̅
2 ≈

2𝜎𝐴
2

𝑡tot
2 [∫ 𝜏𝐴𝑑𝑡

𝑡tot

0

] 

=
2𝜎𝐴

2

𝑡tot 𝜏𝐴⁄
 

We can define an effective number of independent samples 𝑛𝐴 such that: 

𝑛𝐴 ≡ 𝑡tot 2𝜏𝐴⁄  

𝜎𝐴̅
2 =

𝜎𝐴
2

𝑛𝐴
 

This result is an extremely important one.  It says several things: 

• The squared error in any quantity for which we average in simulation decreases as one 

over the effective number of independent samples. 

• Samples that we use in our average to compute 𝐴̅  are only independent if we pick them 

to be spaced at least 2𝜏𝐴 units apart in time. 

• We will not get better statistical accuracy by averaging the value of 𝐴 for every single 

time step in our simulation.  We get just as good accuracy by averaging the value of 𝐴 for 

times spaced 2𝜏𝐴 units of time apart. 

𝑡 

𝐶𝐴(𝑡) 
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Block averaging 

We want to make sure that we are including enough independent samples in our estimates of 

different property averages.  A very basic approach would be to estimate the largest time scale 

in our system, the relaxation time, and make sure we perform the simulation for a large number 

of these times.  This is perhaps the most common approach. 

Alternatively, we could compute 𝜏𝐴.  Indeed, there are procedures for estimating correlation 

functions from simulations.  We could perform a very long simulation, compute the correlation 

function, and estimate 𝜏𝐴 using the integral definition of it.  However, it can be a significant effort 

to determine correlation functions in our simulations since they require long runs a priori. 

Instead, we can use a simple block averaging approach to determine, approximately, the corre-

lation time for a given variable.  The idea of this analysis is to plot: 

𝜎𝐴̅
2  as a function of  

𝜎𝐴
2

𝑡tot
 

for simulations of different lengths 𝑡tot.  The slope of this line gives twice the correlation time, 

per the equation 

𝜎𝐴̅
2 = 2𝜏𝐴

𝜎𝐴
2

𝑡tot
 

In practice, we take a long simulation trajectory and first compute the following: 

𝜎𝐴
2 = variance of 𝐴 over entire simulation trajectory 

Then, we subdivide the trajectory into different, nonoverlapping time segments or blocks.  We 

can then compute the other quantities above: 

𝐴̅𝑖 = average 𝐴 for each block 𝑖 

𝜎𝐴̅
2 = variance of the 𝐴̅𝑖  

𝑡tot = length of each block 𝑖 

By performing the block averages for different numbers of blocks, and hence different 𝑡tot, we 

are able to find the slope corresponding to 𝜏𝐴 above. 

Multiple trials 

While it is very important to perform averages for lengths that exceed correlation times in a single 

simulation, it is common practice to also perform multiple trials of the same run and average the 

results not only in time but also across the different trials.  The use of multiple trials can help to 



© M. S. Shell 2022 12/18 last modified 11/30/2022 

produce results that are more statistically independent.  Each trial should be seeded with a dif-

ferent random initial velocity set. 

Notation 

In the remainder of these notes and in later lectures, we will drop the notation 𝐴̅ and use ⟨𝐴⟩ to 

designate both true equilibrium, statistical-mechanical averages and finite-duration simulation 

averages.  Keep in mind, though, that any average computed from simulation will be subject to 

the statistical properties described above. 

Transport properties 
As NVE molecular dynamics simulations follow the Newtonian evolution of the atomic positions, 

they give rise to trajectories that accurately represent the true dynamics of the system.  Thus, 

these simulations can be used to compute kinetic transport coefficients in addition to thermody-

namic properties. 

Self-diffusivity: Einstein formulation 

The self-diffusion constant 𝐷 is defined as the linear proportionality constant between the 

mass/molar flux of a species and the concentration gradient (Fick’s law).  For a uniform diffusion 

constant (with space, as in a homogeneous bulk phase), the following equation defines evolution 

of the concentration 𝜌 (molecules per volume) with time: 

𝜕𝜌(𝐫, 𝑡)

𝜕𝑡
= −𝐷∇2𝜌(𝐫, 𝑡) 

We can rewrite this equation in terms of the probability density that we will find a molecule at 

some point in space.  Letting ℘(𝐫; 𝑡) be this probability, we then have  

𝜌(𝐫, 𝑡) = ℘(𝐫; 𝑡)𝑁 

∫ ℘(𝐫; 𝑡)𝑑𝐫 = 1 

Making this substitution, 

𝜕℘(𝐫; 𝑡)

𝜕𝑡
= −𝐷∇2℘(𝐫; 𝑡) 

Imagine that a molecule is known to initially start at a given point 𝐫 = 𝐫0 in space at 𝑡 = 0.  Then, 

the solution to ℘(𝐫; 𝑡) is given by  
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℘(𝐫; 𝑡) = (𝜋𝐷𝑡)−
3
2 exp (−

|𝐫 − 𝐫0|2

4𝐷𝑡
) 

We can compute from this the mean-squared displacement with time: 

〈|𝐫 − 𝐫0|2〉 = ∫ ℘(𝐫; 𝑡)|𝒓 − 𝒓0|2𝑑𝐫 

= 6𝐷𝑡 

In other words, the mean-squared displacement grows linearly with time with a coefficient of 

6𝐷.  This equation is an Einstein relation, after Albert Einstein’s seminal work in diffusion.  Im-

portantly, it gives us a way to measure the diffusion constant in simulation: 

1. At time 𝑡 = 0, record all particle positions 𝐫0
𝑁. 

2. At regular intervals 𝑡, compute the mean squared displacement averaged over all atoms, 

|𝐫 − 𝐫0|2.   

3. Find the diffusion constant from the limit at large times: 

𝐷 = lim
𝑡→∞

⟨|𝐫 − 𝐫0|2⟩

6𝑡
 

or, better, from the slope of the mean squared displacement at long times: 

𝐷 =
1

6
 lim
𝑡→∞

𝑑

𝑑𝑡
⟨|𝐫 − 𝐫0|2⟩ 

Some logistical aspects must be kept in mind: 

• The time at which the diffusion coefficient is measured should be a number of relaxation 

times of the system. 

• For better statistics in computing the mean-squared displacement curve (vs. time), it is 

often useful to have multiple time origins, e.g., 𝐫0
𝑁, 𝐫1

𝑁, 𝐫2
𝑁, … reference positions taken at 

statistically independent time intervals (i.e., a relaxation time).  Then, at each time 𝑡 one 

can make updates to the average mean-squared displacement curve at times 𝑡 − 𝑡0, 𝑡 −

𝑡1, 𝑡 − 𝑡2, … using the respective reference coordinates.   

• If a system consists of multiple atom types, each can have its own self diffusion coefficient 

and the equations will involve separate mean squared displacement calculations for the 

respective atoms of each type. 

The following shows the mean-squared displacement curves for oxygen atoms in liquid silica 

(SiO2), taken from [Shell, Debenedetti, Panagiotopoulos, Phys. Rev. E 66, 011202 (2002)]: 



© M. S. Shell 2022 14/18 last modified 11/30/2022 

 

Notice the log-log plot.  We see linear behavior in the curves (expected for random-walk diffusion 

according to a diffusion constant) after some initial time period has passed.  There are different 

regimes in particle diffusion: 

• ballistic regime – At very short times, particles do not “feel” each other, 𝐫 ≈ 𝐯𝑡, and the 

mean squared displacement simply scales as |Δ𝐫|2~𝑣2𝑡2.  On the plot above, we would 

expect to see a slope of 2 at short times, ln|Δ𝐫|2 ~2 ln 𝑡. 

• diffusive regime – At long times, particles have lost memory of their initial positions and 

are performing a random walk according to the diffusion constant, |Δ𝐫|2~6𝐷𝑡.  We 

should only use data from this regime when computing the diffusion constant.  Notably, 

the slope in this regime on the above plot should be 1, ln|Δ𝐫|2 ~ ln 𝑡. 

• caged regime – At intermediate times, the mean squared displacement may not follow 

either of these scaling laws.  Often,  |Δ𝐫|2 will appear to plateau for some time period.  

This behavior is typical of sluggish dynamics in viscous liquids and polymers. 

Self-diffusivity: Green-Kubo formulation 

It is entirely possible to transform the Einstein expression for the self-diffusivity, in terms of the 

mean squared displacement, into a form that relates to the atomic velocities instead, using 

|𝐫 − 𝐫𝟎|𝟐 = |∫ 𝐯(𝑡)𝑑𝑡
𝑡

0

|

2
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We substitute this expression into the equations above and simplify using ideas similar to those 

developed in the time-correlation section.  This approach gives a Green-Kubo relation that con-

nects the diffusivity to the velocity autocorrelation function: 

𝐶𝐯(𝑡) =
⟨𝐯(𝑡) ⋅ 𝐯(0)⟩ − ⟨𝐯(0)⟩ ⋅ ⟨𝐯(0)⟩

⟨𝐯(0) ⋅ 𝐯(0)⟩ − ⟨𝐯(0)⟩ ⋅ ⟨𝐯(0)⟩
=

⟨𝐯(𝑡) ⋅ 𝐯(0)⟩ − ⟨𝐯(0)⟩ ⋅ ⟨𝐯(0)⟩

𝜎𝐯
2

 

The averages here are performed for particles of the same type and over multiple time origins 

for recording the initial velocity 𝐯(0).  The diffusion constant relates to the integral of 𝐶𝐯: 

𝐷 =
𝜎𝐯

2

3
∫ 𝐶𝐯(𝑡)𝑑𝑡

∞

0

 

=
𝜎𝐯

2𝜏𝐯

3
 

In other words, the diffusion constant relates to the correlation time of the velocity.   

In practice, the autocorrelation function is approximated by a discretized array (the index corre-

sponding to a time bin) and computed in a similar manner as the mean-squared displacement 

using multiple time origins.  This function typically decays to near zero in a finite length of time 

and thus the integral only needs to be computed up until this point.  Sometimes special tech-

niques are needed to coarse-grain time in order to treat the statistical fluctuations around zero 

in the tails of the computed autocorrelation function.  

Other transport coefficients 

A very general theory shows that Green-Kubo relations can be formulated for any transport co-

efficient that is a linear constant of proportionality between a flux and a gradient.  Some exam-

ples include the bulk viscosity, shear viscosity, the thermal conductivity, and the electrical con-

ductivity.  Expressions for these can be found in standard texts.  The bulk viscosity, for example, 

is given by: 

𝜂𝑉 =
𝜎𝑃𝑉

2

𝑉𝑘𝐵𝑇
∫ 𝐶𝑃𝑉(𝑡)𝑑𝑡

∞

0

 

where 𝐶𝑃𝑉(𝑡) is the correlation function for fluctuations in the term 𝑃𝑉:  

𝐶𝑃𝑉(𝑡) =
⟨𝑃𝑉(𝑡) ⋅ 𝑃𝑉(0)⟩ − ⟨𝑃𝑉(0)⟩ ⋅ ⟨𝑃𝑉(0)⟩

⟨𝑃𝑉(0) ⋅ 𝑃𝑉(0)⟩ − ⟨𝑃𝑉(0)⟩ ⋅ ⟨𝑃𝑉(0)⟩
=

⟨𝑃𝑉(𝑡) ⋅ 𝑃𝑉(0)⟩ − ⟨𝑃𝑉(0)⟩ ⋅ ⟨𝑃𝑉(0)⟩

𝜎𝑃𝑉
2  
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Structure-based averages 

Radial distribution functions (RDFs) 

The radial distribution function (RDF) or pair correlation function is a measure of the structure 

of a homogeneous phase, such as a liquid, gas, or crystal.  Given that a particle sits at the origin, 

it gives the density of particles at a radial distance 𝑟 from it, relative to the bulk density. 

 

 

Formally, the pair correlation function for a monoatomic system in the canonical ensemble is 

defined by: 

𝑔(𝐫1, 𝐫2) =
𝑉2(𝑁 − 1)

𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁)𝑑𝐫3𝑑𝐫4 … 𝑑𝐫𝑁

𝑍(𝑇, 𝑉, 𝑁)
 

where 𝑍(𝑇, 𝑉, 𝑁) is the canonical partition function.  In an isotropic medium, this function de-

pends only on the relative distance between two atoms, not their absolute position: 

𝑔(𝑟12) 

For an ideal gas with 𝑈(𝐫𝑁) = 0, 

𝑔(𝑟12) =
𝑁 − 1

𝑁
 

≈ 1   (large 𝑁) 

Note that, 

∫(4𝜋𝑟2𝑑𝑟)𝜌𝑔(𝑟) = 𝑁 − 1 

One can also define a radial distribution function for atoms of different types, e.g., between hy-

drogen and oxygen atoms in liquid water.  In this case, we can define  

𝑟 

𝑔(𝑟) 

1 
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𝑔𝐴𝐵(𝐫1, 𝐫2) = 𝑉2 ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝑑𝐫3𝑑𝐫4 … 𝑑𝐫𝑁

𝑍(𝑇, 𝑉, 𝑁𝐴, 𝑁𝐵)
 

for two atom types 𝐴 and 𝐵. 

RDFs can be computed using histograms of the pairwise distances between particles.  For a mon-

atomic system with just one kind of particle, the recipe is the following: 

1. At periodic intervals in the simulation, examine all pairwise 𝑁(𝑁 − 1)/2 distances of the 

𝑁 particles.  One does not need to examine every time step, but only those approximately 

spaced by the relaxation time in the system, or a moderate fraction thereof.  Let the num-

ber of these intervals be 𝑛obs. 

2. Let 𝑐𝑖 denote an array of histogram counts for the total number of times a pairwise dis-

tance 𝑟𝑖𝑗 is observed, where 𝑖δ ≤ 𝑟𝑖𝑗 < (𝑖 + 1)δ and δ is the width of the histogram bins.   

3. After sufficient data collection, the RDF can be approximated at discrete intervals 𝑖𝛿.  

For atoms of the same type: 

𝑔𝐴𝐴(𝑖𝛿) =
𝑐𝑖

𝑛obs𝑁𝐴(𝑁𝐴 − 1)/2 
×

𝑉

4𝜋𝛿3

3
((𝑖 + 1)3 − 𝑖3)

 

For atoms of different types: 

𝑔𝐴𝐵(𝑖𝛿) =
𝑐𝑖

𝑛obs𝑁𝐴𝑁𝐵 
×

𝑉

4𝜋𝛿3

3
((𝑖 + 1)3 − 𝑖3)

 

Energy and pressure from RDFs 

For pair potentials, integrals of an RDF can be used to compute the potential energy and pressure: 

⟨𝑈⟩ =
𝑁

2
∫ [4𝜋𝑟2𝜌𝑔(𝑟)]𝑢(𝑟)𝑑𝑟

∞

0

 

=
2𝜋𝑁2

𝑉
∫ 𝑟2𝑔(𝑟)𝑢(𝑟)𝑑𝑟

∞

0

 

⟨𝑃⟩ =
𝑁𝑘𝐵𝑇

𝑉
−

𝑁

6𝑉
∫ [4𝜋𝑟2𝜌𝑔(𝑟)]𝑟

𝑑𝑢(𝑟)

𝑑𝑟
𝑑𝑟

∞

0

 

=
𝑁𝑘𝐵𝑇

𝑉
−

2𝜋𝑁2

3𝑉2
∫ 𝑟3𝑔(𝑟)

𝑑𝑢(𝑟)

𝑑𝑟
𝑑𝑟

∞

0

 

The latter equation is merely an extension of the virial expression for the pressure.  If there are 

multiple atom types in the system, then we will have multiple 𝑔(𝑟) functions that need to be 

integrated.  For example, for two types 𝐴 and 𝐵: 
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⟨𝑈⟩ = ⟨𝑈𝐴𝐴⟩ + ⟨𝑈𝐵𝐵⟩ + ⟨𝑈𝐴𝐵⟩ 

=
2𝜋

𝑉
∫ 𝑟2[𝑁𝐴

2𝑔𝐴𝐴(𝑟)𝑢𝐴𝐴(𝑟) + 𝑁𝐵
2𝑔𝐵𝐵(𝑟)𝑢𝐵𝐵(𝑟) + 2𝑁𝐴𝑁𝐵𝑔𝐴𝐵(𝑟)𝑢𝐴𝐵(𝑟)]𝑑𝑟

∞

0

 

The coefficient of two in front of the AB terms comes from the fact that these interactions are 

not double counted when performing the usual integral.  A convenient way to express this is 

through a double sum over all atom types (with 𝑀 total types): 

⟨𝑈⟩ =
2𝜋

𝑉
∫ 𝑟2 [∑ ∑ 𝑁𝑋𝑁𝑌𝑔𝑋𝑌(𝑟)𝑢𝑋𝑌(𝑟)

𝑀

𝑌=1

𝑀

𝑋=1

] 𝑑𝑟
∞

0

 

A similar expression can be derived for the pressure: 

⟨𝑃⟩ =
𝑘𝐵𝑇𝑁tot

𝑉
−

2𝜋

3𝑉
∫ 𝑟3 [∑ ∑ 𝑁𝑋𝑁𝑌𝑔𝑋𝑌(𝑟)

𝑑𝑢𝑋𝑌(𝑟)

𝑑𝑟

𝑀

𝑌=1

𝑀

𝑋=1

] 𝑑𝑟
∞

0

 


