
CHE210D
Principles of Modern

Molecular Simulation Methods

Instructor: M. Scott Shell

Fall Quarter 2022

MW (makeup F) 11am-12:15pm in Eng II 3301

course content via ucsb.canvas.edu

The goals of this course

This course is all about doing.

• designing experiments

• running simulations

• analyzing results

• presenting data

• making movies

• working with existing molecular modeling software tools and online
data

The goals of this course

▪ formulation of molecular models

▪ basic and advanced algorithms for computing thermodynamic and
kinetic properties

▪ modern analysis techniques

▪ physical intuition for simulation “experiments”

▪ programming and visualization tools

▪ knowledge of computational issues
and methods for improving efficiency

What’s required

▪ a basic knowledge of statistical mechanics / physical chemistry

▪ some, but not extensive, programming experience

▪ access to a computer on which you can install (free, open-source)
software

▪ NOTE: some examples assume Windows PC, but should be portable to
other platforms

Course tracks

▪ normal track

• undergraduate

• 1st year graduate student in any area

• 2nd year+ graduate student NOT involved in computational research

▪ advanced track

• anything other than above

Recommended course texts

▪ Berend Smit and Daan Frenkel, Understanding Molecular
Simulation (2nd edition), Academic Press (2001).

▪ Andrew R. Leach, Molecular Modelling: Principles and
Applications (2nd edition), Prentice-Hall (2001).

▪ Mark Tuckerman, Statistical Mechanics: Theory and
Molecular Simulation, Oxford University Press (2010)

Coursework and logistics

▪ readings (programming and software tutorials)

▪ 4 simulation exercises (50% of grade)

▪ final project (50% of grade)

▪ For Wednesday 10/5:

• Python and NumPy / SciPy reading

• exercise #1

▪ Office hours TBA

A word of advice

▪ Nothing in this course is computation intense…
…BUT simulations take time to complete!

▪ Debugging multiplies the simulation time!

▪ Don’t start last minute…. you’ll be throttled by the run times.

▪ Use ECI or CNSI CSC resources if your at-home computing is sluggish.

Course website

NOT THIS → OLDER SITE BUT HAS GREAT EXAMPLES/TEMPLATES
www.engr.ucsb.edu/~shell/che210d

MAIN COURSE SITE:
NEW CANVAS PLATFORM FOR COURSE

canvas.ucsb.edu

length scale

time scale

quantum
mechanics

classical atomic

coarse-grained
molecular

mesoscale

macroscopic or
continuum

E  = H 

bottom-up

top-down

Simulations at different scales

Topics covered

▪ Ab initio and electronic structure calculations (brief)

▪ Classical semi-empirical force fields

▪ Basic methods for evaluating properties
• minimization (structures)

• molecular dynamics (thermo & kinetics)

• Monte Carlo (thermo)

▪ Free energy & phase equilibria methods

▪ Advanced sampling approaches

▪ Multiscale methods and coarse-grained models

Tools we will use

▪ Python programming language

▪ NumPy and SciPy

▪ Fortran (basics, for numerically intense routines only)

▪ Visualization software (UCSF Chimera)

There are many great simulation software packages / suites that are great
for regular use and “production” runs.

We’re deliberately not using them so that your coding exercises will
provide more significant insight into how they work.

Why Python?

▪ free, open source, cross-platform

▪ intuitive, easy to use, highly legible code

▪ “batteries included” philosophy

▪ very popular, enormous community with add-on modules

▪ Python is now THE main platform for scientific computing and data
science in research, even in industry.

It is much more useful and career relevant for you to know
Python than MatLab, despite what oldschoolers tell you.

www.xkcd.com

A simple Python program to compute primes

()

Python + NumPy + SciPy

▪ NumPy – VERY fast linear algebra and array routines, random number
generation, other common numerical computations

▪ SciPy – comprehensive and very fast mathematical package with more
compled algorithms for e.g.: integration, optimization, interpolation,
Fourier transforms & signal processing, linear algebra, statistics

▪ Open source Python + NumPy + SciPy (+ community packages) is now
standard and MUCH more powerful than commercial packages like
MatLab

Why Python + Fortran?

▪ Python alone is slow for raw numerics.

▪ Fortran is arguably the fastest numeric programming language, and
widely used in the back end of simulation packages.

▪ Accelerator packages (e.g., Cython, Numba) aren’t nearly as fast as
Fortran.

▪ Much existing code in the scientific community is in Fortran

▪ Fortran is super simple to learn and incorporate into python.

▪ Bottleneck routines written Fortran can be imported transparently into
Python, almost magically

Anaconda Python distribution

https://www.anaconda.com/distribution/

Spyder Python editor (installed with Anaconda)

UCSF Chimera

Pymol

Molecular Modelling Toolkit

Can I do this?

▪ No difference between learning a programming language and learning
equipment software

▪ Molecular simulation codes are generally not complex software

▪ Many examples / tools / templates available online

▪ Challenge is not so much how to simulate,
but what to simulate and what & how to analyze

Example

What’s it all good for?

▪ Qualitative frameworks for thinking about molecular processes and
mechanisms

▪ Quantitative understanding of different molecular driving forces

▪ Prediction of properties or molecular architectures for engineering
design

Some examples…

Multiple phases of a simple substance: argon

A more complex molecule: a protein

dramatization

A water nanodroplet on a silica surface

simulation by E. R. Cruz-Chu, A. Aksimentiev , and K. Schulten
movie from http://www.ks.uiuc.edu/Gallery/Movies/

Water transport inside a carbon nanotube

simulation by A. Kolesnikov and coworkers
movie from http://www.anl.gov/Media_Center/News/2005/IPNS050513.html

Water transport through a protein channel

simulation by E. Tajkhorshid, K. Schulten, Y. Wang, J. Yu, F. Zhu, and M. Jensen
movie from http://www.ks.uiuc.edu/Gallery/Movies/

cell
membrane

(not shown)

outside of cell

inside of cell

Phase separation and equilibria

simulation by A. Delapaz and L. Gelb
movie from http://www.chemistry.wustl.edu/~gelb/gchem/materials/lve/index.html

Driving forces in small-molecule binding

Young, et al., PNAS, 2007

empty cavity bound biotin

streptavidin binding cavity

Solvation and binding free energies

simulation by D. Mobley

Artificial thermodynamic cycles for binding

figure from D. Mobley

Try out some interactive simulations yourself

www.etomica.org

𝟑 𝝁𝒎

electro
d

e
el

ec
tr

o
d

e

Some early milestones in molecular simulation

▪ 1953: Monte Carlo method applied to hard spheres (Metropolis, Rosenbluth,
Rosenbluth, Teller & Teller)

▪ 1954: perturbation approach to free energies (Zwanwig)

▪ 1956: molecular dynamics of hard spheres (Alder and Wainwright)

▪ 1963: computation of the chemical potential (Widom)

▪ 1964: molecular dynamics of liquid argon (Rahman)

▪ 1971: molecular dynamics of liquid water (Rahman & Stillinger)

Advances in models and algorithms

▪ 1976: optimal estimates of free energy differences (Bennett)

▪ 1976: first simulation of protein dynamics (McCammon et al.)

▪ 1977: non-Boltzmann sampling and artificial ensembles (Torrie & Valleau)

▪ early 1980s: community-developed transferable classical potential models and
software suites (CHARMM, AMBER)

▪ 1987-1995: robust & rigorous techniques for predicting phase equilibria
(Panagiotopoulos, Wilding, Kofke)

▪ 1989, 1992: generalized, optimal techniques for extracting free energy estimates
(Ferrenberg, Swendsen, et al)

Recent accomplishments

▪ 1997-1999: theory for equilibrium properties from nonequilibrium measurements
(Jarzynski, Crooks)

▪ 1998: 1 s simulation of miniprotein folding (Duan and Kollman)

▪ 1999-2002: generalized and extended ensemble methods (Sugita & Okamoto, Wang
& Landau)

▪ 2002: water freezing from 6 s simulation (Matsumoto et al.)

▪ 2002-2003: massive distributed computing for small protein folding
(Folding@Home, Pande et al.)

▪ 2004: design of an entirely new protein fold (Baker et al.)

▪ 2010 - present: emergence of GPU-based molecular dynamics

System size versus time

K.Y. Sanbonmatsu and C.S. Tung, “Performance computing in biology: Multimillion
atom simulations of nanoscale systems,” J. Structural Biology, 157, 470 (2007)

Moore’s law

Today’s supercomputers are massive clusters

Frontier Supercomputer
at Oak Ridge

Current top supercomputers

as of 6/22
www.top500.org

Growth of simulation power

▪ 107 increase in single processor speed since 1977

▪ 20-500 further increase due to parallelization

▪ 104 – 106 further increase due to algorithms

▪ NET: 13-15 orders of magnitude improvement

▪ BUT: still orders of magnitude behind reality (longest molecular
dynamics simulations are ~100s s)

adapted from K. Gubbins at http://chumba.che.ncsu.edu/che596m/

Secrets to modeling (AKA, the hard parts)

▪ Develop a molecular model capable of capturing the behavior of
interest

• scaling laws? basic driving forces? molecular structures? quantitative
predictions?

▪ Use a simulation approach that addresses the physics of interest and
any bottlenecks / challenges

• long time scales? pathways? specific interactions?

▪ Connect results to statistical-mechanics

• free energies? phase behavior?

This week and next

▪ Review of probability and statistical mechanics (brief)

▪ Introduction to Python, NumPy, and SciPy
(mostly through reading)

▪ Ab initio methods

▪ Classical semi-empirical models

▪ Exploring the potential energy landscape

Pay attention to Pythonic coding styles

TASK: determine if a string is in an array

arr = ["apples", "oranges", "bananas", "grapes"]

s = "cherries"

found = False

size = len(arr)

for i in range(0, size):

if arr[i] == s:

found = True

VERSUS

arr = ["apples", "oranges", "bananas", "grapes"]

found = "cherries" in arr

Pay attention to Pythonic coding styles

TASK: find the centroid of a set of coordinates

Centroid = numpy.zeros(3)

n = len(Pos)

for i in range(0, n):

Centroid = Centroid + Pos(i,:)

Centroid = Centroid / n

VERSUS

Centroid = numpy.mean(Pos, axis=0)

Fig. 5. Engine efficiency vs. compression ratio. The graph plots

two temperature cases, showing that a higher temperature provides a

slight increase in efficiency at elevated compression ratios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

e
ff

ic
ie

n
cy

compression ratio

Engine efficiency versus compression ratio

400 K

500 K

Produce professional graphs sized appropriately

Fig. 5. Engine efficiency vs. compression ratio. The graph plots

two temperature cases, showing that a higher temperature provides a

slight increase in efficiency at elevated compression ratios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

e
ff

ic
ie

n
cy

compression ratio

Engine efficiency versus compression ratio

400 K

500 K

outer border

gridlines

legend outside

bad data range
gray axes and missing full box

tic marks on outside

text too
small

data points and error
bars not shown (if applies)

title

standard width is 3.25 inches

Produce professional graphs sized appropriately

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11

ef
fi

ci
en

cy

compression ratio

500 K

400 K

Fig. 5. Engine efficiency vs. compression ratio. A higher

temperature provides a slight increase in efficiency at elevated

compression ratios.

Produce professional graphs sized appropriately

Do me a favor

▪ If you find major typos or errors in the tutorials and lecture notes,
please send me a quick email!

