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Monte Carlo move sets ChE210D 

Today's lecture: various kinds of Monte Carlo moves and how they are designed 

to facilitate otherwise challenging simulations 

Considerations for Monte Carlo moves 

Thermodynamics versus convergence kinetics 

One advantage of MC simulations is that they permit great flexibility in the design and implemen-

tation of different MC move sets.  There are in fact many different kinds of Monte Carlo moves.  

For every move, one chooses an acceptance criterion such that the desired ensemble probabili-

ties ℘𝑚 are achieved.  In other words, the choice of a move does not affect the ultimate equilib-

rium ensemble.  Rather, it affects the rate, in MC steps, at which the simulation can converge to 

a stationary distribution.  Thus, different MC moves affect the “kinetics” of a MC simulation, but 

not the thermodynamics. 

In mathematical terms, the transition probabilities 𝜋𝑚𝑛 and 𝜋𝑛𝑚 can both either be large or 

small, resulting in frequent or infrequent transitions, respectively.  For either case, their ratio can 

remain constant so as to produce the same equilibrium distribution: 

𝜋𝑚𝑛

𝜋𝑛𝑚
=

℘𝑛

℘𝑚
 

Ultimately the choice of a move is motivated by the desire to have good convergence behavior 

in the simulation: 

• fast equilibration times  

• fast relaxation times and correlation times (so that shorter runs are then required to pro-

duce averages of good statistical quality) 

Move considerations 

To achieve these properties, one wants a simulation that moves very fast through configuration 

space, i.e., large 𝜋𝑚𝑛 values for 𝑚 ≠ 𝑛 and small 𝜋𝑚𝑚 values.  This translates to MC moves that 

both have a high probability of acceptance and move the system far in configuration space.  The 

efficacy of a MC move or set of moves can be assessed by computing correlation times. 

There is a rigorous mathematical way to treat of convergence rates of Markov chains.  If we were 

able to form the matrix 𝜋𝑚𝑛 for all pairs of states 𝑚 and 𝑛, there we would be able to compute 

the rate of convergence of the MC simulation by finding the eigenvalues of the transition 
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probability matrix.  One of these eigenvalues will be one, corresponding to the stationary distri-

bution.  The others will determine how fast the simulation converges.  Generally speaking, we 

want these other eigenvalues to be as small as possible for fast convergence.  The choice of MC 

moves will affect the 𝜋𝑚𝑛 matrix and hence these eigenvalues. 

Many systems are difficult to sample, meaning it is challenging to explore ergodically their con-

figuration spaces.  Such systems emerge when there are rare, low-energy configurations or when 

concerted atomic motions are required to evoke molecular movement.  Systems that are chal-

lenging to sample include: 

• dense liquids and solids 

• low-temperature systems 

• macromolecular or polymeric systems 

• “associating” molecules with highly directional interactions (e.g., water with hydrogen 

bonds) 

• “frustrated” systems whose inherent kinetics are very slow (e.g., supercooled liquids and 

glasses) 

• systems that transition to, from, or between various “ordered” phases, such as crystals, 

nano- and meso-structured complex fluids, folded biomolecules, etc. 

Oftentimes, multiple kinds of MC moves are used in the same simulation run.  This can be to 

accomplish all of the fluctuations in the ensemble of interest, or simply to enhance the sampling.  

Keep in mind that the selection of a particular kind of move at each MC step must be done ran-

domly, i.e., by drawing a random number.  Not doing so ultimately breaks the underlying Markov 

chain because it destroys the Markov property. 

In this lecture, we discuss a small number of advanced MC moves and move sets.  We will not 

always present a detailed derivation of the acceptance criteria for each, but these are available 

in Leach and in Frenkel and Smit.   

Biased moves 
One way to enhance the efficiency of MC moves is to bias them.  That is, we compute some 

information about the system that allows us to preferentially choose moves with a higher prob-

ability of acceptance.  Such moves always modify the acceptance criterion.  All of our derivations 

will be based on the fundamental detailed balance relation 
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𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

Biased insertion 

In GCMC simulations, it can be challenging to successfully insert a molecule in dense systems.  

One way around this would be to selectively insert the molecule at locations in the simulation 

box that are “empty”, or that better accommodate insertion.  For this kind of move, we need to 

re-derive the acceptance criterion for insertion, following the original GCMC derivation: 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

Here, the move proposal probability 𝛼12 corresponds to the probability that we will insert a par-

ticle in state 1 that will correspond to the location of the additional particle in state 2.  In the 

original acceptance move, we chose this location randomly 

𝛼12 =
𝑑𝐫

𝑉
 

In a biased insertion, we choose a location from a subset of the volume that corresponds to areas 

where we have identified a high-probability of insertion success.  Such areas may be those that 

do not have any core overlaps with other particles.  Let the total volume of this subset be 𝜖𝑉 

where 𝜖 ≤ 1.  Then, 

𝛼12 =
𝑑𝐫

𝜖𝑉
 

All other quantities in the acceptance relation are the same as in the original insertion.  Thus, the 

final acceptance criterion, using the Metropolis rule, is: 

𝑃12
acc = min [1,

𝜖𝑉

𝑁 + 1
𝑒−𝛽Δ𝑈+𝛽𝜇′

]         for particle insertion 

For a particle deletion, the acceptance criterion is: 

𝑃12
acc = min [1,

𝑁

𝜖𝑉
𝑒−𝛽Δ𝑈−𝛽𝜇′

]         for particle deletion 

In both cases, we have to compute the value of 𝜖: 

• For the insertion case, we compute 𝜖 before the insertion. 

• For the deletion case, we have to compute 𝜖 after deletion.  The reason we need to com-

pute it after deletion is that it is the reverse move (𝑃21
acc) that incorporates 𝜖 into the 
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acceptance criterion, not the forward one.  Moreover, if the molecule being deleted does 

not lie within the 𝜖𝑉 volume found after deletion, we must reject the deletion move be-

cause there is zero probability that the reverse move will be performed. 

How do we compute the available insertion volume 𝜖𝑉?  This can be a computationally intense 

procedure.  One simple approach might be to divide the simulation box into cubic cells and iden-

tify those cells that are free of particles.  Ultimately, however, if our biased moves are able to 

achieve much better acceptance rates than nonbiased moves, this computational cost might be 

worth it—the evolution of the system as a function of CPU effort might actually be faster. 

Force bias 

For dense systems, displacement moves tend to place particles on top of other particles, which 

results in a large increase in energy and chance for rejection.  One way to improve displacement 

moves might be to bias them in the direction of the force, which corresponds to the direction of 

decreasing potential energies. 

In the force bias approach, like single particle displacements, a particle is displaced in its 𝑥, 𝑦, 𝑧 

coordinates by random amounts in the range [−𝛿𝑟max, 𝛿𝑟max].  However, displacements are not 

picked uniformly in this range.  Rather, they are biased in the direction of the force.  Take the 𝑥-

coordinate.  The probability of picking a displacement Δ𝑥 is taken to be: 

℘(Δ𝑥) ∝ exp(𝜆𝛽𝑓𝑥𝛥𝑥) 

Here, 𝑓𝑥 is the force on the displaced particle in the 𝑥 direction, evaluated at the original config-

uration (before displacement).  The term −𝑓𝑥Δ𝑥 is a first-order expansion of the change in energy 

around the initial particle location, and thus this probability approximates the Boltzmann weights 

around the initial configuration.  The parameter 𝜆 is used to tune how much we use the force to 

bias the move.  For 𝜆 = 0, we recover usual single-particle displacements. 

The probability above must be normalized within the window [−𝛿𝑟max, 𝛿𝑟max].  Define  

𝐶𝑥 = ∫ exp(𝜆𝛽𝑓𝑥𝛥𝑥) 𝑑Δ𝑥
𝛿𝑟max

−𝛿𝑟max

 

=
sinh(𝜆𝛽𝑓𝑥𝛿𝑟max)

𝜆𝛽𝑓𝑥
  

Then 

℘(Δ𝑥) =
exp(𝜆𝛽𝑓𝑥𝛥𝑥)

𝐶𝑥
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Similar expressions exist for the 𝑦 and 𝑧 coordinates.  To pick values of Δ𝑥, Δ𝑦, Δ𝑧, therefore, one 

must sample from a truncated exponential distribution of this form.  There are a number of nu-

merical methods for accomplishing this task. 

Once we have proposed a move, we need to find the appropriate acceptance criterion.   Notice 

that the selection of displacement values now modifies our move proposal probabilities 𝛼12 and 

𝛼21.  In fact, these two probabilities are no longer symmetric.  Let 

℘(Δ𝐫) = ℘(Δ𝑥)℘(Δ𝑦)℘(Δ𝑧) 

This is the probability of picking a displacement vector Δ𝐫.  Notice that this probability depends 

on the initial configuration, because this is where the forces are evaluated.  Then, 

𝛼12 = ℘1(Δ𝐫) 

For the reverse move, a force-bias move will use the forces at the new configuration, not the 

original one.  Therefore, 

𝛼21 = ℘2(−Δ𝐫) 

As a result, 

𝛼21

𝛼12
=

℘2(−Δ𝐫)

℘1(Δ𝐫)
 

Therefore, the final acceptance criterion with the Metropolis rule is modified from usual single 

particle displacements as 

𝑃12
acc = min [1,

℘2(−𝛥𝐫)

℘1(𝛥𝐫)
𝑒−𝛽𝛥𝑈] 

= min [1, exp (−𝛽Δ𝑈 − ln
℘2(−𝛥𝐫)

℘1(𝛥𝐫)
)] 

= min [1, exp (−𝛽Δ𝑈 − 𝜆𝛽(𝐟1 + 𝐟2) ⋅ Δ𝐫 + ln
𝐶1,𝑥𝐶1,𝑦𝐶1,𝑧

𝐶2,𝑥𝐶2,𝑦𝐶2,𝑧
) ] 

Notice that we have to compute two forces and two sets of 𝐶 values: one at the initial configu-

ration and one at the final. 

By tuning the parameter 𝜆, the force bias approach can result in acceptance ratios that are much 

higher than typical particle displacements.  However, the additional cost of evaluating the forces 

can reduce the overall efficiency of the simulation in real CPU time.  Thus, typical speedups of 

only 2-3 are found for this approach. 
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Orientational bias 

For rigid molecules that have strongly orientational-dependent interactions, simple orientational 

moves typically have low acceptance rates.  Such systems include molecules with strong dipoles 

or hydrogen bonding, like water.  To increase the acceptance ratio of these moves, we can bias 

orientations to energetically-favorable conformations.  This procedure works well if we can de-

compose the potential energy into two parts: a positional part depending only on the center-of-

mass position of the molecule and a computationally less expensive orientational component 

depending only on the orientation, for fixed position: 

𝑈 = 𝑈pos + 𝑈or 

The orientational bias algorithm works as follows: 

1. Perform a usual displacement move on the center-of-mass position of the rigid molecule. 

2. Generate 𝐾 trial orientations at the new position. 

3. Select one of these conformations, say 𝑖, with a probability proportional to the Boltzmann 

factor, 

℘(𝑖) =
𝑒−𝛽𝑈𝑖

or

∑ 𝑒−𝛽𝑈𝑗
or

𝐾
𝑗=1

 

4. Determine whether or not to accept the selected conformation and displacement using 

an acceptance criterion. 

To determine the acceptance criterion, we impose detailed balance as before.  However, we must 

consider the probability of the reverse move in this case, in which the current orientation is se-

lected from 𝐾 possible configurations generated at the proposed state.  To do so, we must gen-

erate 𝐾 − 1 random additional orientations at the current state to simulate the kind of move we 

would perform in reverse.   

With these considerations, the acceptance criterion can be determined.  A detailed derivation is 

available in Frenkel and Smit.  Here we only present the final result. 

𝑃12
acc = min [1,

𝑤2

𝑤1
exp(−𝛽𝛥𝑈pos)] 

The quantity 𝑤 is a weight and it depends on the 𝐾 random orientations generated at the new 

state 2 as well as the 𝐾 − 1 orientations generated at the current state 1: 
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𝑤1 = 𝑒−𝛽𝑈1
or

+ ∑ 𝑒−𝛽𝑈𝑗
or

𝐾

𝑗=2

 

𝑤2 = ∑ 𝑒−𝛽𝑈𝑗
or

𝐾

𝑗=1

 

The first term in 𝑤1 corresponds to the original orientation at state 1.  The other terms in the 

sums for 𝑤1 and 𝑤2 correspond to the 𝐾 − 1 and 𝐾 random orientations generated at the center 

of mass positions for 1 and 2, respectively. 

Hybrid MC 
For nonrigid molecules and particularly for complex heterogeneous systems, displacement 

moves can become extremely inefficient because of the way in which they distort bond lengths 

and angles.  Such systems include macromolecules like proteins and polymers.  In these cases, it 

is very difficult to identify intelligent move sets that are able to propagate the system in configu-

rational space. 

On the other hand, molecular dynamics methods are quite able to evolve such systems in time 

since they provide deterministic pathways on a system’s potential energy surface.  Thus, we 

might think about using such schemes to generate trial configurations in Monte Carlo simula-

tions.  

The hybrid Monte Carlo method uses short MD trajectories to generate trial configurations.  

While it may seem computationally expensive to implement MD within an MC simulation, this 

approach can sometimes be one of the few viable ways of implementing moves with nonzero 

acceptance probability in very complex systems.  This approach was developed by Duane et al in 

1987.  It entails the following steps: 

1. Generate a set of initial momenta according to a Boltzmann distribution at the tempera-

ture of interest.  This amounts to picking each velocity component randomly from a 

Gaussian distribution such that the total joint probability distribution follows: 

℘(𝐩𝑁) ∝ 𝑒−𝛽𝐾(𝐩𝑁) 

= 𝑒
−𝛽 ∑

𝐩𝑖
2

2𝑚𝑖
𝑖  

2. Perform a short molecular dynamics trajectory for a fixed time 𝑡 using a given fixed time 

step δ𝑡.  It is very important that the integrator be reversible. 

3. Accept or reject the move according to an acceptance criterion. 
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The acceptance criterion for this kind of move is developed in a similar manner as before.  We 

must recognize that the configuration produced at the end of the trajectory is uniquely specified 

by the initial set of momenta chosen.  That is, there is a one-to-one correspondence between the 

initial momenta and final configuration.  If there were not, the time evolution in molecular dy-

namics would not be deterministic. 

The probability that we will move to a new configuration is given by the probability that we pick 

the right set of momenta that will lead us to it after the MD integration procedure 

𝛼12 = ℘(𝐩1
𝑁) 

∝ 𝑒−𝛽𝐾(𝐩1
𝑁) 

This can be show rigorously using Louiville’s equation.  For the reverse move, we must consider 

the probability that we will pick a set of momenta leading us back to the original conformation 

after the same amount of integration time.  This is just, 

𝛼21 = ℘(𝐩2
𝑁) 

∝ 𝑒−𝛽𝐾(𝐩2
𝑁) 

Note that 𝐩2
𝑁 is the set of momenta at configuration 2 that must be picked to return us to the 

current configuration with a molecular dynamics trajectory.  Since the dynamics are reversible, 

we must have 

𝐩2
𝑁(0) = −𝐩1

𝑁(𝑡) 

That is, the momenta after integrating a time 𝑡 from state 1 must be negated at state 2 to bring 

us back to state 1.  This is only possible if the trajectory is reversible, and thus we require our 

integrator to have this property.   Note that this implies 𝐾1(𝑡) = 𝐾2(0).  That is, the kinetic en-

ergy at the end of the MD trajectory is equal to that at the beginning of the reverse move. 

Using detailed balance in the canonical ensemble, 

𝑃12
acc

𝑃21
acc =

𝛼21

𝛼12

℘2

℘1
 

= (
𝑒−𝛽𝐾2

𝑒−𝛽𝐾1
) (

𝑒−𝛽𝑈2

𝑒−𝛽𝑈1
) 

= 𝑒−𝛽Δ𝐸 

where Δ𝐸 = 𝐾2 + 𝑈2 − 𝐾1 − 𝑈1.  Here, Δ𝐸 is the change in energy from the beginning to the 

end of the short trajectory.  Thus an acceptance criterion for the entire MD trajectory from 1 to 

2 would be: 
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𝑃12
acc = min[1, 𝑒−𝛽Δ𝐸] 

For very small time steps δ𝑡, the total energy is highly conserved, Δ𝐸 ≈ 0, and such a move will 

always be accepted.  This is because of the Boltzmann sampling of initial velocities and the fact 

that Newton’s equations follow a constant energy hypersurface.  Thus, small time steps lead to 

what looks like a long MD trajectory with periodic velocity resampling from a Boltzmann distri-

bution.  This is identical to the Andersen thermostat discussed in earlier lectures. 

Because of the 100% acceptance of hybrid moves, it may not seem advantageous to use this 

approach in favor of a straightforward MD simulation.  However, one advantage of the ac-

ceptance criterion above is that it still holds rigorously true for large δ𝑡 and when the energy is 

not conserved well.  That is, we can treat δ𝑡 as a sort of maximum displacement parameter and 

tune its value so as to achieve ~50% acceptance.  By tuning δ𝑡 up, energy will no longer be well 

conserved and we will have nonzero Δ𝐸. 

In practice, the choice between a molecular dynamics run with a thermostat and the hybrid MC 

approach typically tips towards the former due to the straightforward nature of the dynamical 

evolution.  However, in particular cases, hybrid MC may offer benefits.   For example, one may 

evolve a system in short MD trajectories according to an approximate potential that is much 

faster to compute than the actual force field.  The acceptance criterion above always corresponds 

to the original potential, but any force field can be used for the dynamical evolution.  One exam-

ple might be a system using the Ewald summation in its potential: here, one might use simple 

screened Coulomb interactions to guide the MD trajectory, which are much faster to compute. 

Approximate potential or multiple “time” step MC moves  
One way to improve the efficiency of a MC simulation is not to increase the acceptance rate of 

the moves themselves, but to speed up the simulations as a whole in real CPU time so that longer 

trajectories can be performed.  This is possible if one can identify an approximate potential that 

is much faster to compute than the true force field, but that behaves similarly.  In such cases, one 

can perform a MC simulation that rigorously converges to the ensemble of the true (expensive) 

force field while allowing much faster computations due to the approximate force field. 

Let the true force field be 𝑈 and the approximate potential be 𝑈̃.  Then, the basic procedure is: 

1. Make 𝑛 MC moves using the approximate potential 𝑈̃.  Accept or reject them as would 

be done otherwise if 𝑈̃ were the true potential. 

2. At the end of the short 𝑛-step mini-trajectory, accept or reject the entire trajectory gen-

erated with 𝑈̃ using the true potential 𝑈.   
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3. Repeat steps 1 and 2.  Each 𝑛-step mini-trajectory is in essence one MC move using the 

true potential.  Therefore, the trajectory used for property averages corresponds to the 

configurations generated after each acceptance or rejection of the mini-trajectories. 

We need to determine the acceptance criterion for a mini-trajectory.  To do so, we need to know 

the probability of going from an initial state 1 at the beginning of the trajectory to a final state 2 

at the end of it, after 𝑛 steps.  Denote this probability as 𝜋12
(𝑛)

.  Assuming that each step within 

the trajectory obeys detailed balance, it can be shown that  

℘̃1𝜋12
(𝑛)

= ℘̃2𝜋21
(𝑛)

 

That is, the mini-trajectories obey detailed balance as well.  Here, the tilde characters indicate 

that we are sampling from a probability distribution that corresponds to the approximate poten-

tial, 

℘̃𝑚 ∝ 𝑒−𝛽𝑈̃𝑚  

The above result is an important one because it allows us to compute the ratio of transition prob-

abilities of the mini-trajectory: 

𝜋21
(𝑛)

𝜋12
(𝑛)

=
℘̃1

℘̃2

 

Now, we consider one mini-trajectory as a MC step using the true potential.  We pick an ac-

ceptance criterion for this step using the usual detailed balance equation: 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

Here, the 𝛼’s are given by the transition probabilities for the mini-trajectory.  Thus: 

𝑃12
acc

𝑃21
acc =

𝜋21
(𝑛)

℘2

𝜋12
(𝑛)

℘1

 

=
℘̃1℘2

℘̃2℘1

 

In the canonical ensemble, 

𝑃12
acc

𝑃21
acc = 𝑒−𝛽(𝑈2−𝑈1)+𝛽(𝑈̃2−𝑈̃1) 

= 𝑒−𝛽Δ𝑈+𝛽Δ𝑈̃ 
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With the Metropolis rule, 

𝑃12
acc = min[1, exp(−𝛽Δ𝑈 + 𝛽Δ𝑈̃)] 

Here, keep in mind that the subscripts 1 and 2 correspond to the configurations before and after 

the mini-trajectory, not the configurations in between.  This expression is used to accept or reject 

the entire mini-trajectory.  Note that it enforces a sort-of “correction” step, in which deviations 

from the true potential are used to decide whether to accept or reject the trajectory.  If the true 

potential equals the approximate one, then the mini-trajectories are always accepted because 

Δ𝑈 = Δ𝑈̃. 

For this approach to be effective, one must be able to find an approximate potential that is (1) 

computationally faster than the true one, and (2) a good approximation to the true potential.  If 

the latter is not the case, then the mini-trajectories will have a high rate of rejection. 

Such an approach might be used for systems that have long-ranged electrostatic interactions.  

Here, the true potential might involve an Ewald sum, while the approximate one might involve 

the bare (untreated) or a screened  Coulombic interaction.  Note that the parameter 𝑛 must be 

chosen.  This might be tuned to balance a high acceptance ratio and efficiency of movement 

through configuration space. 

Chain molecules on lattices 
For polymeric systems, it can be very difficult to develop efficient MC moves due to the inter-

twining nature of the chains that prevents substantial movement through phase space in single-

atom displacement.  In these cases, a number of specialized moves have been developed.  These 

moves were originally applied to lattice polymer systems, in which each monomer is constrained 

to sit on a cubic lattice point.  The discussion of these moves is easiest to explain in the lattice 

case, and will be our focus here; however, there have been extensions of such moves to contin-

uum classical systems.  We will not address the latter, but details can be found in Frenkel and 

Smit and in the literature. 

Displacement-type moves 

There are a number of moves for displacing multiple monomer sites at once in a polymeric sys-

tem.  These are shown in the figure below: 



 

© M. S. Shell 2022 12/14 last modified 11/30/2022 

 

These moves are all symmetric and thus the usual Metropolis criterion can be applied.  Note that 

the reptation move resembles snake-like motion in the polymeric system.   

Configurational bias  

Insertion moves pose major challenges for polymeric systems.  The configurational bias method 

enables one to incrementally insert monomers of a polymer into a system in a way that avoids 

overlaps with existing molecules on the lattice.  This results in a modification of the acceptance 

criterion. 

Here is how the approach works: 

1. Choose a random lattice site to place the first monomer of the polymer. 

2. Look around this site at the 𝑧 neighbors surrounding it.  Here, 𝑧 is the coordination num-

ber of the lattice (2 for 1D, 4 for 2D, and so on).  Count the number of free sites.  Let this 

be 𝑧2.  The 2 subscript indicates the second monomer. 

3. Randomly pick one of the 𝑧2 sites to place the second monomer.   

4. Continue this process until all 𝑀 monomers have been placed down. 

5. Accept or reject the insertion. 

The acceptance criterion is given by the probability for proposing the move given.  The initial site 

is chosen with probability 

℘(1) =
1

𝑉
 

where 𝑉 is the number of lattice sites.  The second site is chosen with probability 

end rotation kink jump crankshaft

reptation
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℘(2) =
𝑧2

𝑧
 

The third and all higher order sites are chosen with probability 

℘(𝑖) =
𝑧𝑖

𝑧 − 1
 

The denominator in this case accounts for the fact that the site of the previous monomer is not 

available for selection. 

The total move proposal probability is given by the product of all of these individual probabilities: 

𝛼12 = ∏ ℘𝑖

𝑖

 

The reverse move corresponds to deletion of the inserted particle, 

𝛼21 =
1

𝑁 + 1
 

Therefore, the acceptance probability is given by: 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

=
1

𝑁 + 1
[∏ ℘(𝑖)

𝑖

]

−1
℘2

℘1
 

=
𝑉

𝑁 + 1

𝑧(𝑧 − 1)𝑀−2

∏ 𝑧𝑖
𝑀
𝑖=2

 𝑒−𝛽Δ𝑈 

The above approach can be enhanced if we also incorporate energetics in the selection of loca-

tions to place monomers.  At each step in the polymer build process, we can choose a subsequent 

neighboring lattice site with probabilities proportional to the energies that a monomer would 

have if sitting at that site.  At each step: 

1. Compute the energies 𝑢𝑗  of interactions of the 𝑖th monomer placed at the 𝑧 or 𝑧 − 1 

possibilities for neighboring sites 𝑗. 

2. Pick one of the 𝑗 sites with a probability equal to 

℘(𝑖,𝑗) =
𝑒−𝛽𝑢𝑗

𝑤𝑖
       𝑤𝑖 ≡ ∑ 𝑒−𝛽𝑢𝑗

𝑗

 

3. Compute the total Rosenbluth weight: 
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𝑊 = ∏ 𝑤𝑖

𝑀

𝑖=2

 

4. Accept/reject the move according to: 

𝑃12
acc

𝑃21
acc =

𝑉

𝑁 + 1
[∏ ℘(𝑖)

𝑖=2

]

−1

𝑒−𝛽Δ𝑈 

=
𝑉

𝑁 + 1
(∏ 𝑤𝑖

𝑖=2

𝑒𝛽𝑢𝑖) 𝑒−𝛽Δ𝑈 

=
𝑉

𝑁 + 1
(∏ 𝑤𝑖

𝑖=2

) 

=
𝑉

𝑁 + 1
𝑊 

The third line comes from the fact that ∑ 𝑢𝑖𝑖 = Δ𝑈. 

Configurational bias deletions involve a similar acceptance criterion.  In these cases, one must 

account for the Rosenbluth weight of the deleted molecule in the acceptance criterion.  It is com-

puted as before, retracing the insertion of the polymer from the beginning. 

Displacement-type moves can be accomplished using a similar approach, in which part of a poly-

mer molecule is deleted and the monomers are then reconstructed using a configurational bias 

procedure.   

 

 

 

 

 

 


