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Monte Carlo simulations in other ensembles ChE210D 

Today's lecture: theory and implementation of Monte Carlo simulations in the 

𝑁𝑃𝑇 (isothermal-isobaric) , 𝜇𝑉𝑇 (Grand canonical) ensembles, and other ensem-

bles. 

General approach 
One of the great benefits of Monte Carlo (MC) simulations are that we can simulate from any 

ensemble of interest.  In this lecture, we examine some commonly-studied ensembles.  Keep in 

mind that the general approach to deriving the methods consists of the following: 

1. Determine the microstate probability distribution, ℘𝑚, for the ensemble of interest. 

2. Determine a set of Monte Carlo moves.  These moves should accomplish changes in all 

of the fluctuating quantities in the ensemble (e.g., energy, volume, or particle number 

fluctuations.) 

3. Find the acceptance criterion by imposing detailed balance. 

𝑵𝑷𝑻 Monte Carlo 
In canonical MC, the number of particles and volume are fixed, specified as inputs to the simula-

tion.  We can then compute an estimate of the pressure using the virial relation, averaged over 

long simulation runs.  Oftentimes, however, we are interested in specifying the pressure and 

determining the density (i.e., the volume of a simulation box for fixed number of particles).  Such 

a task naturally leads one to the isothermal-isobaric ensemble. 

Isothermal-isobaric ensemble (constant 𝑻, 𝑷, 𝑵) 

The isothermal-isobaric ensemble corresponds to constant 𝑇, 𝑃, 𝑁 conditions, when a system is 

held at constant temperature and pressure by connection to a heat and volume bath.  That is, 

the system can exchange both energy and volume with its surroundings.  The partition function 

is given by: 

Δ(𝑇, 𝑃, 𝑁) = ∫ 𝑒−𝛽𝑃𝑉𝑄(𝑇, 𝑉, 𝑁)𝑑𝑉
∞

0

 

=
1

Λ(𝑇)3𝑁𝑁!
∫ 𝑒−𝛽𝑃𝑉𝑍(𝑇, 𝑉, 𝑁)𝑑𝑉

∞

0

 

The corresponding macroscopic thermodynamic potential is the Gibbs free energy, 
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𝐺(𝑇, 𝑃, 𝑁) = −𝑘𝐵𝑇 ln Δ(𝑇, 𝑃, 𝑁) 

At these conditions, both system energy and volume fluctuate: 

℘(𝐸, 𝑉) =
Ω(𝐸, 𝑉, 𝑁)𝑒−𝛽𝐸−𝛽𝑃𝑉

Δ(𝑇, 𝑃, 𝑁)
 

℘(𝑉) = ∫ ℘(𝐸, 𝑉)𝑑𝐸 

=
𝑄(𝑇, 𝑉, 𝑁)𝑒−𝛽𝑃𝑉

Δ(𝑇, 𝑃, 𝑁)
 

Importantly, one microstate in the system corresponds to both a set of momenta and positions, 

and a value of the system volume.  If we consider only the configurational coordinates, 

℘𝑚 = ℘(𝐫𝑁 , 𝑉)𝑑𝐫𝑁𝑑𝑉 

=
𝑒−𝛽𝑈−𝛽𝑃𝑉

Λ(𝑇)3𝑁𝑁!
×

𝑑𝐫𝑁𝑑𝑉

Δ(𝑇, 𝑃, 𝑁)
 

The differential position and volume elements must be included so that ℘𝑚 is dimensionless. 

Monte Carlo implementation 

In the isothermal-isobaric ensemble, both the energy and the volume of a system fluctuate.  In-

stead of specifying 𝑇, 𝑉, 𝑁, we specify 𝑇, 𝑃, 𝑁.  That is, we specify the pressure in addition to the 

temperature. 

In the simulation, we then accomplish energy fluctuations using displacement moves, as with 

canonical MC.  For volume fluctuations, we can use volume scaling moves: 

1. Pick a random change in volume Δ𝑉 in the range [−δ𝑉max, δ𝑉max] and make the new vol-

ume 𝑉 ← 𝑉 + Δ𝑉. 

2. Scale the entire simulation box uniformly along each axis.   

3. Upon the volume change, scale the particle positions uniformly.  If molecules are being 

studied, the centers of mass of the molecules are scaled uniformly, rather than the indi-

vidual atoms (which would result in a severe distortion of bonds and angles.) 
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In scaling the positions of the particles, we keep the dimensionless or scaled positions the same: 

(𝑠𝑥,1, 𝑠𝑦,1, … , 𝑠𝑧,𝑁) = (
𝑥1

𝐿
,
𝑦1

𝐿
, … ,

𝑧𝑁

𝐿
) 

𝐬𝑁 =
𝐫𝑁

𝐿
 

We derive the acceptance criterion for volume scaling moves by imposing detailed balance: 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

Keep in mind that here the indices 1 and 2 correspond to the sets of variables (𝐫1
𝑁, 𝑉1) and 

(𝐫2
𝑁, 𝑉2), respectively.  The proposal probability 𝛼12 gives the probability that we will pick (𝐫2

𝑁, 𝑉2) 

given that we are at (𝐫1
𝑁, 𝑉1).  There are two parts to this probability: 

The probability that we will pick 𝑉2 given 𝑉1, for |𝑉2 − 𝑉1| < δ𝑉max, is given by  

𝛼(𝑉1 → 𝑉2) =
1

2δ𝑉max
 

Technically, this is a differential probability because volume is a continuous variable.  We there-

fore have: 

∫ 𝛼(𝑉1 → 𝑉2)
𝑉+δ𝑉max

𝑉−δ𝑉max

= ∫
𝑑𝑉

2δ𝑉max

𝑉+δ𝑉max

𝑉−δ𝑉max

 

= 1 

The second part of the proposal probability is that we will pick 𝐫2
𝑁 given 𝐫1

𝑁.  This part of our move 

requires some careful treatment.  Recall that the positions of all of the atoms are given by 
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continuous variables.  We might consider “one” configuration as sitting in a region 𝑑𝐫𝑁 about the 

coordinates 𝐫𝑁.  If we uniformly scale the positions, then the differential volume 𝑑𝐫𝑁 will change.  

In other words, a different amount of configurations in one volume will map to the same differ-

ential regions in configuration space in the new volume.  We need to account for this change: 

𝛼(𝐫1
𝑁 → 𝐫2

𝑁)

𝛼(𝐫2
𝑁 → 𝐫1

𝑁)
=

𝑑𝐫2
𝑁

𝑑𝐫1
𝑁 

We can evaluate this expression because the scaled positions stay the same: 

𝛼(𝐫1
𝑁 → 𝐫2

𝑁)

𝛼(𝐫2
𝑁 → 𝐫1

𝑁)
=

𝑉2
𝑁𝑑𝐬2

𝑁

𝑉1
𝑁𝑑𝐬1

𝑁 

= (
𝑉2

𝑉1
)

𝑁

 

An alternate, practical way to think about this probability is to recall that computers have finite 

precision in storing the positions of all of the atoms, which ultimately means there are a finite 

number of configurations.  Consider one atom in one dimension in a “volume” of length 𝐿.  In 

principle, we could count all of the possible configurations in one volume 𝐿1.  At a different vol-

ume 𝐿2 > 𝐿1, there would be a greater number of possible configurations available, since we 

would have a greater range of the particle coordinate in the new volume.  By scaling the possible 

coordinates at 𝐿1 to new volume 𝐿2, we can only generate a fraction of the possible configura-

tions in 𝐿2 because we always start with one of the finite possibilities at 𝐿1.  That fraction is  

(𝐿1 𝐿2⁄ ).  For three dimensions and 𝑁 particles, the fraction is (𝐿1 𝐿2⁄ )3𝑁. 

Putting together the two components of the move proposal probabilities, 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

=
(1 2δ𝑉max⁄ )

(1 2δ𝑉max⁄ )
(

𝑉2

𝑉1
)

𝑁 ℘2

℘1
  

We are now prepared to insert the isothermal-isobaric microstate probabilities: 

℘2

℘1
= [

𝑒−𝛽𝑈2−𝛽𝑃𝑉2

Λ(𝑇)3𝑁
×

𝑑𝐫𝑁𝑑𝑉

Δ(𝑇, 𝑃, 𝑁)
] [

𝑒−𝛽𝑈1−𝛽𝑃𝑉1

Λ(𝑇)3𝑁
×

𝑑𝐫𝑁𝑑𝑉

Δ(𝑇, 𝑃, 𝑁)
]

−1

 

= 𝑒−𝛽Δ𝑈−𝛽𝑃Δ𝑉 

Finally, we arrive at: 

𝑃12
acc

𝑃21
acc = (

𝑉2

𝑉1
)

𝑁

𝑒−𝛽Δ𝑈−𝛽𝑃Δ𝑉 
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As with canonical MC, we can satisfy this acceptance requirement using the Metropolis criterion: 

𝑃12
acc = min [1, (

𝑉2

𝑉1
)

𝑁

𝑒−𝛽Δ𝑈−𝛽𝑃Δ𝑉] 

It is often beneficial for precision reasons to rearrange this equation so that all terms are inside 

the exponential: 

𝑃12
acc = min [1, exp (𝑁 ln (

𝑉2

𝑉1
) − 𝛽Δ𝑈 − 𝛽𝑃Δ𝑉)] 

= exp {min [0, 𝑁 ln (
𝑉2

𝑉1
) − 𝛽Δ𝑈 − 𝛽𝑃Δ𝑉]} 

Thus, a typical 𝑁𝑃𝑇 simulation entails the following: 

1. Random particle displacement moves, with 𝑃12
acc = exp{min[0, −𝛽Δ𝑈]} .  A random num-

ber 𝑟 is drawn in [0.0,1.0) and the move is accepted if 𝑃12
acc > 𝑟. 

2. Random volume scaling moves, with 𝑃12
acc = exp{min[0, 𝑁 ln(𝑉2 𝑉1⁄ ) − 𝛽Δ𝑈 − 𝛽𝑃Δ𝑉]} .  

A random number 𝑟 is drawn in [0.0,1.0) and the move is accepted if 𝑃12
acc > 𝑟. 

Practical considerations 

Molecular systems 

For molecular systems, we do not scale the positions of all of the atoms when we perform a 

volume scaling move, but rather the centers of mass of each molecule.  Otherwise, we would 

greatly distort bonds in a way that would make the change in potential energy very unfavorable 

for acceptance of the move. 

When one scales the centers of mass, the considerations for changes in the differential volume 

elements associated with 𝛼(𝐫1
𝑁 → 𝐫2

𝑁) applies only to the 𝑁mol degrees of freedom.  Thus the 𝑁 

term appearing in the acceptance criterion is no longer the total number of atoms but 𝑁mol: 

𝑃12
acc = min [1, (

𝑉2

𝑉1
)

𝑁mol

𝑒−𝛽Δ𝑈−𝛽𝑃Δ𝑉] 

Log-volume scaling moves 

For specified 𝑇, 𝑃 that place systems near liquid-gas phase coexistence, or near the critical point, 

the natural volume fluctuations can be very large as the system traverses between the two 

phases.  In these cases, the simple volume increments presented above can become inefficient 

because it will require many displacements Δ𝑉 to traverse between gas and liquid states. 



 

© M. S. Shell 2022 6/20 last modified 11/30/2022 

In such cases, it becomes much more efficient to propose random moves in the logarithm of the 

volume rather than the volume itself.  Such log-volume scaling moves entail the following: 

1. Pick a random value 𝛿(= ln Δ𝑉) on the uniform distribution [−𝛿max, 𝛿max]. 

2. Let Δ𝑉 = exp(𝛿). 

3. Update 𝑉 ← 𝑉 + Δ𝑉 and scale the particle positions as before. 

For log-volume scaling moves, the proposal probability 𝛼(𝑉1 → 𝑉2) changes because we are now 

sampling non-uniformly in volume. 

𝛼(𝑉1 → 𝑉2) ∝ 𝑉2 

This modifies the acceptance criterion.  When one proceeds through the derivation, 

𝑃12
acc = min [1, (

𝑉2

𝑉1
)

𝑁+1

𝑒−𝛽Δ𝑈−𝛽𝑃Δ𝑉] 

= exp {min [0, (𝑁 + 1) ln (
𝑉2

𝑉1
) − 𝛽Δ𝑈 − 𝛽𝑃Δ𝑉]} 

Notice the 𝑁 + 1 rather than 𝑁 as before. 

Other MC volume moves 

Isotropic scaling moves are certainly not the only kinds of MC moves that can be implemented to 

change the volume.  One can perform anisotropic moves, in which scaling is performed along 

only one axis.  Such moves can be beneficial for systems that have fixed interfaces or walls in the 

other directions.  In these cases, the acceptance criterion must be re-derived using a procedure 

similar to above. 

Choice of 𝛿𝑽max 

Typically the maximum volume displacement is adjusted so that the average acceptance ration 

is roughly 30-50%.  Too small values of this parameter result in a slow exploration of volume 

space.  Too large will result in configurations with core overlaps upon scaling the volume down. 

Computing the potential energy 

After a volume scaling move, the total potential energy of the system needs to be recalculated, 

an operation whose expense scales as 𝑁2.  Sometimes, it becomes possible to speed this step for 

specific kinds of potential energy functions.  For a system of particles interacting exclusively 

through a pairwise energy function of the form 

𝑢(𝑟𝑖𝑗) = 𝑎𝑟𝑖𝑗
−𝑛 
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The new energy can be computed simply from a scaling of the old energy, 

𝑈2 = (
𝐿2

𝐿1
)

−𝑛

𝑈1 

The Lennard-Jones potentials involves two terms of this form, where 𝑛 = 12 and 𝑛 = 6.  One 

can maintain separate sums of each of these terms in the simulation and use the above relation 

to compute the new total energy for each term after volume scaling. 

For systems involving bonded interactions, this kind of simplification is generally not feasible and 

the total energy must be re-evaluated completely at each volume scaling move. 

Frequency of moves 

In an 𝑁𝑃𝑇 simulation, particle displacement moves typically require an expense proportional to 

𝑁, while volume scaling moves scale as 𝑁2.  It is therefore customary to attempt one volume 

scaling move, on average, for every 𝑁 displacement moves attempted.  A typical procedure is: 

1. Pick a random number 𝑟 on [0.0,1.0).   

2. If 𝑟 < (𝑁 + 1)−1, perform a volume scaling move.  Otherwise, perform a displacement 

move. 

The random component of move selection is extremely important to the correct convergence of 

the Markov chain.  Thus, one should not explicitly cycle through the 𝑁 particles performing dis-

placement moves and then perform a volume scaling attempt.  Such regularity of moves, without 

a random component, will ultimately bias the stationary distribution. 

Check: the virial 

Though the pressure is explicitly specified in an 𝑁𝑃𝑇 simulation, one can still compute the aver-

age pressure through the virial relation, 

⟨𝑃⟩ = ⟨
𝑁𝑘𝐵𝑇

𝑉
−

𝑊

3𝑉
⟩ 

= 𝑁𝑘𝐵𝑇 ⟨
1

𝑉
⟩ − ⟨

𝑊

3𝑉
⟩ 

This average pressure is subject to statistical fluctuations in the simulation and the extent to 

which equilibrium can be achieved for the system of interest.  However, it can be shown that in 

the limit of infinitely long, converged simulations, the virial pressure will equal the imposed pres-

sure.  This provides a useful check for 𝑁𝑃𝑇 simulations. 
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Grand-canonical Monte Carlo 
In a grand-canonical Monte Carlo (GCMC) simulation, we specify the temperature and chemical 

potential of the species of interest, for a fixed simulation volume.  This leads to fluctuations in 

both the energy and number of particles.  Like the isothermal-isobaric ensemble, this also pro-

vides a way to determine the density. 

Grand canonical ensemble (constant 𝑻, 𝑽, 𝝁) 

The grand canonical ensemble occurs when a system is coupled to a heat bath and an infinite 

reservoir with which it can exchange particles.  The partition function is: 

Ξ(𝑇, 𝑉, 𝜇) = ∑ 𝑄(𝑇, 𝑉, 𝑁)𝑒𝛽𝑁𝜇

∞

𝑁=0

  

= ∑
𝑍(𝑇, 𝑉, 𝑁)

Λ(𝑇)3𝑁𝑁!
𝑒𝛽𝑁𝜇

∞

𝑁=0

 

The macroscopic thermodynamic potential is: 

𝑃𝑉 = 𝑘𝐵𝑇 ln Ξ(𝑇, 𝑉, 𝜇) 

In the grand canonical ensemble, both the energy and number of particles fluctuate: 

℘(𝐸, 𝑁) =
Ω(𝐸, 𝑉, 𝑁)𝑒−𝛽𝐸+𝛽𝜇𝑁

Ξ(𝑇, 𝑉, 𝜇)
 

℘(𝑁) = ∫ ℘(𝐸, 𝑁)𝑑𝐸 

=
𝑄(𝑇, 𝑉, 𝑁)𝑒𝛽𝜇𝑁

Ξ(𝑇, 𝑉, 𝜇)
 

One microstate in the system corresponds to both a set of momenta and positions, and a value 

of the particle number 𝑁.  If we consider only the configurational coordinates, 

℘𝑚 = ℘(𝐫𝑁 , 𝑁)𝑑𝐫𝑁 

=
𝑒−𝛽𝑈+𝛽𝜇𝑁

Λ(𝑇)3𝑁𝑁!
×

𝑑𝐫𝑁

Ξ(𝑇, 𝑉, 𝜇)
 

The differential position elements must be included so that ℘𝑚 is dimensionless. 

There is, however, one major subtlety with this partition function and microstate distribution.  

The equations above assume that the particles are indistinguishable, giving rise to the 𝑁! term in 

the denominator.  In reality, in our simulation, they are distinguishable.  Each particle always has 
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a definite set of coordinates and is indexed with a number in the internal routines of our simula-

tion runs.  We treat particles as distinguishable: we pick specific particles to displace, for example.  

Therefore, the true distribution function we will implement in our simulation is that for distin-

guishable particles, which omits the 𝑁!  term: 

℘𝑚 =
𝑒−𝛽𝑈+𝛽𝜇𝑁

Λ(𝑇)3𝑁
×

𝑑𝐫𝑁

Ξ(𝑇, 𝑉, 𝜇)
 

Monte Carlo implementation 

In the grand canonical ensemble, both the energy and the particle number fluctuates.  Instead of 

specifying 𝑇, 𝑉, 𝑁, we specify 𝑇, 𝑉, 𝜇.  That is, we specify the chemical potential in addition to the 

temperature.  In the following example, we will assume that we have a monatomic system. 

In the simulation, we then accomplish energy fluctuations using displacement moves, as with 

canonical MC.  For particle number fluctuations, we can use particle addition and deletion 

moves.  For an addition move, 

1. Pick a random set of coordinates in the simulation box.  That is, pick 𝑥, 𝑦, 𝑧 separately in 

the uniform distribution [− 𝐿 2⁄ , 𝐿 2⁄ ]. 

2. Insert a new particle at that position. 

A random deletion move entails, 

1. Randomly pick a particle of the 𝑁 current particles. 

2. Delete the particle. 

We derive the acceptance criteria for these moves by imposing detailed balance: 

𝑃12
acc

𝑃21
acc =

𝛼21℘2

𝛼12℘1
 

Keep in mind that here the indices 1 and 2 correspond to the sets of variables (𝐫1
𝑁1 , 𝑁1) and 

(𝐫2
𝑁2 , 𝑁2), respectively.  The proposal probability 𝛼12 gives the probability that we will pick 

(𝐫2
𝑁2 , 𝑁2) given that we are at (𝐫1

𝑁1 , 𝑁1).   

Particle additions 

Here, we will consider a particle addition move, such that 𝑁2 = 𝑁1 + 1.  For simplicity of notation 

we will simply use 𝑁1 = 𝑁 and 𝑁2 = 𝑁 + 1. 

The move proposal probability for insertion stems from the fact that we pick a random location 

in space and place the particle there, 
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𝛼12 =
𝑑𝐫

𝑉
 

Note that, as expected, this probability is one when integrated over all possibilities, i.e., over all 

space, 

∫
𝑑𝐫

𝑉𝑉

= 1 

The proposal probability for the reverse move, however, is different.  The reverse move for 2 →

1 involves deletion of the particle we inserted.  If we randomly pick a particle to delete, there is 

a 1/𝑁2 chance that we will pick the one that we inserted.  Thus, 

𝛼21 =
1

𝑁 + 1
 

Using the detailed balance condition, 

𝑃12
acc

𝑃21
acc =

(
1

𝑁 + 1)

(
𝑑𝐫
𝑉 )

[
𝑒−𝛽𝑈2+𝛽𝜇(𝑁+1)

Λ(𝑇)3(𝑁+1)
×

𝑑𝐫𝑁+1

Ξ(𝑇, 𝑉, 𝜇)
] [

𝑒−𝛽𝑈1+𝛽𝜇𝑁

Λ(𝑇)3𝑁
×

𝑑𝐫𝑁

Ξ(𝑇, 𝑉, 𝜇)
]

−1

 

=
𝑉

(𝑁 + 1)Λ(𝑇)3
𝑒−𝛽(𝑈2−𝑈1)+𝛽𝜇 

=
𝑉

(𝑁 + 1)Λ(𝑇)3
𝑒−𝛽Δ𝑈+𝛽𝜇 

Notice that the differential volume elements 𝑑𝐫 all cancelled, even though there were a different 

amount in each of the microstate probabilities.  The differential from the move proposal proba-

bility compensated in this regard.  Any move that inserts a particle should have this differential 

since there will always be some volume element associated with placing a particle at a location 

in space. 

The acceptance relation includes the thermal de Broglie wavelength.  In practice for very simple 

systems, such as the Lennard-Jones system, this constant is typically absorbed inside the chemi-

cal potential.  We define a relative chemical potential, referenced to something that resembles 

the ideal gas standard chemical potential:  

𝜇′ ≡ 𝜇 − 𝑘𝐵𝑇 ln Λ3(𝑇) 

The acceptance relation then becomes, 

𝑃12
acc

𝑃21
acc =

𝑉

𝑁 + 1
𝑒−𝛽Δ𝑈+𝛽𝜇′
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This relation can be satisfied using the normal Metropolis criterion, 

𝑃12
acc = min [1,

𝑉

𝑁 + 1
𝑒−𝛽Δ𝑈+𝛽𝜇′

] 

For precision reasons, this can be arranged to the following: 

𝑃12
acc = min {1, exp [−𝛽Δ𝑈 + 𝛽𝜇′ + ln (

𝑉

𝑁 + 1
)]} 

= exp {min [0, −𝛽Δ𝑈 + 𝛽𝜇′ + ln (
𝑉

𝑁 + 1
)]} 

Particle deletions 

For a particle deletion move, we will simply use 𝑁1 = 𝑁 and 𝑁2 = 𝑁 − 1.  A similar derivation to 

the one above shows that the correct criterion satisfies 

𝑃12
acc

𝑃21
acc =

Λ(𝑇)3𝑁

𝑉
𝑒−𝛽Δ𝑈−𝛽𝜇 

Again, we can define a relative chemical potential and absorb the thermal de Broglie wavelength 

inside it.  Further using the Metropolis rule, we arrive at the following acceptance criterion: 

𝑃12
acc = min [1,

𝑁

𝑉
𝑒−𝛽Δ𝑈−𝛽𝜇′

] 

= exp {min [0, −𝛽Δ𝑈 − 𝛽𝜇′ + ln (
𝑁

𝑉
)]} 

Note that the criteria for acceptance and deletion of moves are not the same.  That is, this is not 

a symmetric MC move. 

Practical considerations 

Molecular systems 

For rigid molecules, upon insertion we must choose both a center of mass position and an orien-

tation.  Due to the inclusion of orientational variables, the acceptance criterion will then entail a 

“volume” of orientational space due to one molecule.  For diatomic molecules, this volume is 4𝜋.  

For larger molecules, the volume is 8𝜋2.  The difference comes from the fact that diatomic mol-

ecules only require two angles to describe orientation, while higher-order polyatomic molecules 

require three.  In either case, this constant can be absorbed into the relative chemical potential.  

The acceptance criterion then depends on the number of center-of-mass positions: 

𝑃12
acc = min [1,

𝑉

𝑁mol + 1
𝑒−𝛽Δ𝑈+𝛽𝜇′

]       for insertions 
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𝑃12
acc = min [1,

𝑁mol

𝑉
𝑒−𝛽Δ𝑈−𝛽𝜇′

]         for deletions 

For nonrigid molecules, one must select a conformation of the molecule before inserting it.  The 

selection of a conformation will affect the move proposal probabilities and thus modify the ac-

ceptance criterion.  One approach may be to take these conformations from a reservoir of struc-

tures extracted from a single-molecule canonical simulation at the same temperature.  In this 

case, the part of the move proposal probability corresponding to selection of the molecule’s in-

ternal degrees of freedom will be proportional to exp (−𝛽𝑈).   

Computing the potential energy 

After a particle addition move, the change in potential energy of the system needs to be recalcu-

lated.  Since only a single particle is added, one only needs to compute the 𝑁 pairwise interaction 

energies with the newly-added particle.  Similarly for a particle deletion, only the 𝑁 pairwise en-

ergies of the deleted molecule need to be computed (prior to deletion).  Thus the expense of 

these moves scales as 𝑁 rather than 𝑁2.  This makes grand canonical simulation particularly ef-

ficient for exploring variations in density. 

Frequency of moves 

In an 𝜇𝑉𝑇 simulation, both particle displacement and insertion/deletion moves require an ex-

pense proportional to 𝑁 for pairwise potentials.  Thus typical fractions of attempted moves ded-

icated to additions/deletions are 30-50%, with displacements the remaining balance.  Keep in 

mind that the type of move should be chosen randomly, by drawing from a random distribution.   

Efficiency of insertion and deletion moves 

Particle insertion and deletion moves can offer an important advantage relative to other kinds of 

moves: they are often thought to enhance ergodicity and the exploration of configuration space 

because they enable particles to suddenly appear and disappear in the simulation box.  That is, 

they often help speed the equilibration portion of the simulation because they impart such dras-

tic changes on the system configuration.   

On the other hand, dense systems like liquids can render insertion/deletion moves very ineffi-

cient.  In these cases, an insertion frequently causes a core overlap with an existing particle; the 

energy becomes very high, and the move is rejected.  Unlike displacement and volume scaling 

moves, there is no parameter to tune to achieve a target acceptance ratio.  It is not infrequent 

to find reported acceptance ratios for GCMC simulations that in the range 0.1%-1.0% for liquids.  

For crystalline solids, these moves are completely impractical as presented here. 
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Multicomponent systems 

For multicomponent systems, a GCMC simulation entails a separate chemical potential for each 

molecular species.  In this case, acceptance and deletion moves must be performed for each kind 

of molecule using the appropriate chemical potential and component number of molecules.  Al-

ternatively, it is possible to perform a partial GCMC simulation in which only a subset of the 

chemical potentials is specified and the number of molecules of the other species is fixed. 

Comparison of isothermal-isobaric and GCMC simulations 

Thermodynamic state and fluctuations 

Both 𝑁𝑃𝑇 and 𝜇𝑉𝑇 simulations enable one to specify two thermodynamic field variables: the 

temperature and either the pressure 𝑃 or chemical potential 𝜇.  In this respect, there is only one 

extensive parameter that defines the size of the system (𝑁 or 𝑉).  These simulations are conven-

ient because they enable one to uniquely specify the intensive thermodynamic state of the sys-

tem at the outset.  Keep in mind that, for a single component system, the Gibbs phase rule dic-

tates that only two such parameters are required. 

In addition, both of these ensembles capture both energy and density fluctuations.  As we will 

see in later lectures, such fluctuations are important to understanding phase equilibria, notably 

liquid-gas phase transitions.  Ultimately, we are able to relate the observed fluctuations to the 

underlying density of states.  As a preview, consider the isothermal-isobaric ensemble.  For spec-

ified 𝑇 and 𝑃, the observed joint distribution of energy and volume fluctuations obeys the rela-

tion: 

℘(𝐸, 𝑉) ∝ Ω(𝐸, 𝑉, 𝑁)𝑒−𝛽𝐸−𝛽𝑃𝑉 

If we measure the distribution on the LHS—for example, via a histogram in an 𝑁𝑃𝑇 simulation—

we can back out the density of states to within an unknown, multiplicative constant.  This enables 

us to begin computing entropies and free energies in our simulations.  Moreover, there are im-

portant techniques for using this perspective to predict conditions of phase equilibrium. 

Advantages and disadvantages 

Both of the methods described explore both density and energy fluctuations.  The choice of the 

isothermal-isobaric or the grand canonical ensemble for a simulation can be motivated by several 

factors: 

• For molecular systems of nonrigid molecules, 𝑁𝑃𝑇 simulations are far easier to imple-

ment. 
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• For atomic systems or molecular systems of rigid molecules, 𝜇𝑉𝑇 simulations can be much 

more efficient because the simulation expense for a density change scales as 𝑁 rather 

than 𝑁2 for pairwise potentials in the general case.  However, speedups may be possible 

for particular potentials in the 𝑁𝑃𝑇 ensemble. 

• 𝜇𝑉𝑇 simulations can speed equilibration due to the fast exploration of configuration 

space that insertion and deletion moves promote. 

• For very dense systems, grand canonical insertions and deletions are rarely accepted, and 

the 𝑁𝑃𝑇 ensemble is more efficient.   

• For structured phases, like crystalline solids, the 𝑁𝑃𝑇 ensemble is much preferred. 

The Gibbs Ensemble 
The Gibbs ensemble is, in some sense, a combination of both isothermal-isobaric and GCMC sim-

ulation methods.  It was devised by Panagiotopoulous in 1987 as a method for studying phase 

coexistence.  While it falls in the general class of phase equilibria methods that we will discuss in 

more detail in later lectures, it is beneficial for us to discuss it here given its connection to the 

approaches just described.   

A distinguishing feature of the Gibbs ensemble is that it entails two simulation boxes (“subsys-

tems”) that are coupled to each other.  The coupling between them is done in such a way as to 

achieve coexistence between two phases.   

Statistical-mechanical formulation 

Consider equilibrium between two phases A and B.  Phases exist spontaneously on their own 

without the use of partitions or membranes or other interventions, and since they are in equilib-

rium with each other, they can exchange energy, volume, and particles.  When such is the case, 

the conditions of equilibrium are given by maximization of the entropy subject to the constraints 

of constant total energy, volume, and particles.  For two phases, this becomes: 

max[𝑆𝐴(𝐸𝐴, 𝑉𝐴, 𝑁𝐴) + 𝑆𝐵(𝐸𝐵, 𝑉𝐵, 𝑁𝐵)] 

In general, at a maximum, we have: 

𝑑𝑆𝐴 + 𝑑𝑆𝐵 = 0 

(
𝑑𝑆𝐴

𝑑𝐸𝐴
) 𝑑𝐸𝐴 + (

𝑑𝑆𝐴

𝑑𝑉𝐴
) 𝑑𝑉𝐴 + (

𝑑𝑆𝐴

𝑑𝑁𝐴
) 𝑑𝑁𝐴 + (

𝑑𝑆𝐵

𝑑𝐸𝐵
) 𝑑𝐸𝐵 + (

𝑑𝑆𝐵

𝑑𝑉𝐵
) 𝑑𝑉𝐵 + (

𝑑𝑆𝐵

𝑑𝑁𝐵
) 𝑑𝑁𝐵 = 0 
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1

𝑇𝐴
𝑑𝐸𝐴 +

𝑃𝐴

𝑇𝐴
𝑑𝑉𝐴 −

𝜇𝐴

𝑇𝐴
𝑑𝑁𝐴 +

1

𝑇𝐵
𝑑𝐸𝐵 +

𝑃𝐵

𝑇𝐵
𝑑𝑉𝐵 −

𝜇𝐵

𝑇𝐵
𝑑𝑁𝐵 = 0 

But since 𝑑𝐸𝐴 + 𝑑𝐸𝐵 = 0, 𝑑𝑉𝐴 + 𝑑𝑉𝐵 = 0, and 𝑑𝑁𝐴 + 𝑑𝑁𝐵 = 0, by the constancy of the total 

energy, volume, and number of particles: 

(
1

𝑇𝐴
−

1

𝑇𝐵
) 𝑑𝐸𝐴 + (

𝑃𝐴

𝑇𝐴
−

𝑃𝐵

𝑇𝐵
) 𝑑𝑉𝐴 − (

𝜇𝐴

𝑇𝐴
−

𝜇𝐵

𝑇𝐵
) 𝑑𝑁𝐴 = 0 

Recognizing that 𝑑𝐸𝐴, 𝑑𝑉𝐴, and 𝑑𝑁𝐴 can all be varied independently in this equation, the condi-

tions for equilibrium between two phases are given by: 

𝑇𝐴 = 𝑇𝐵       𝑃𝐴 = 𝑃𝐵        𝜇𝐴 = 𝜇𝐵  

We can also consider the case when the two systems are also in contact with a very large heat 

bath that maintains them at constant temperature.  When such is the case, the partition function 

for the aggregate system is the product of the partition functions for the two subsystems.  If the 

two systems are not allowed to exchange volume or particles, the total partition function is: 

𝑄(𝑇, 𝑉𝐴, 𝑉𝐵, 𝑁𝐴, 𝑁𝐵) = 𝑄𝐴(𝑇, 𝑉𝐴, 𝑁𝐴)𝑄𝐵(𝑇, 𝑉𝐵, 𝑁𝐵) 

= [
1

𝑁𝐴! Λ(𝑇)3𝑁𝐴
∫ 𝑒−𝛽𝑈(𝐫𝐴

𝑁𝐴)𝑑𝐫𝐴
𝑁𝐴] [

1

𝑁𝐵! Λ(𝑇)3𝑁𝐵
∫ 𝑒−𝛽𝑈(𝐫𝐵

𝑁𝐵)𝑑𝐫𝐵
𝑁𝐵] 

On the other hand, if the two phases are constrained to exchange particles and volume, then we 

must sum the total system partition function over all possible allocations of volume and particles 

between the two phases for fixed 𝑉 = 𝑉𝐴 + 𝑉𝐵 and 𝑁 = 𝑁𝐴 + 𝑁𝐵: 

𝑄(𝑇, 𝑉, 𝑁) = ∑  

𝑁

𝑁𝐴=0

 ∫ 𝑄𝐴(𝑇, 𝑉𝐴, 𝑁𝐴)𝑄𝐵(𝑇, 𝑉 − 𝑉𝐴, 𝑁 − 𝑁𝐴)𝑑𝑉𝐴

𝑉

0

 

= ∑  

𝑁

𝑁𝐴=0

 ∫ [
1

𝑁𝐴! Λ(𝑇)3𝑁𝐴
∫ 𝑒−𝛽𝑈(𝐫𝐴

𝑁𝐴)𝑑𝐫𝐴
𝑁𝐴

𝑉𝐴

] [
1

(𝑁 − 𝑁𝐴)! Λ(𝑇)3(𝑁−𝑁𝐴)
∫ 𝑒−𝛽𝑈(𝐫𝐵

𝑁𝐵)𝑑𝐫𝐵
𝑁𝐵

𝑉−𝑉𝐴

] 𝑑𝑉𝐴

𝑉

0

 

Combining the integrals and simplifying, 

𝑄(𝑇, 𝑉, 𝑁) =
1

Λ(𝑇)3𝑁
∑  

𝑁

𝑁𝐴=0

 ∫
1

𝑁𝐴! (𝑁 − 𝑁𝐴)!
[∫ 𝑒−𝛽𝑈(𝐫𝐴

𝑁𝐴)𝑑𝐫𝐴
𝑁𝐴

𝑉𝐴

] [∫ 𝑒−𝛽𝑈(𝐫𝐵
𝑁𝐵)𝑑𝐫𝐵

𝑁𝐵

𝑉−𝑉𝐴

] 𝑑𝑉𝐴

𝑉

0

 

In the total system, one microstate corresponds to the specification of the positions of all of the 

atoms in each system (𝐫𝐴
𝑁 , 𝐫𝐵

𝑁) and the values of 𝑁𝐴 and 𝑉𝐴: 

℘(𝐫𝐴
𝑁, 𝐫𝐵

𝑁 , 𝑁𝐴, 𝑉𝐴) ∝
1

𝑁𝐴! (𝑁 − 𝑁𝐴)!
𝑒−𝛽𝑈(𝐫𝐴

𝑁𝐴)𝑒−𝛽𝑈(𝐫𝐵
𝑁𝐵) 
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Monte Carlo implementation 

The Gibbs ensemble simulates two phases that are in equilibrium.  Each phase corresponds to its 

own, separate simulation box in the computer.  The phases are both connected to a heat bath to 

maintain constant temperature conditions.  Phase equilibrium is achieved by allowing the boxes 

to exchange volume and particles.  The phases are non-interacting other than this fact; i.e., there 

are no potential energies between particles in different simulation boxes.  There are then three 

types of MC moves in a Gibbs ensemble simulation: 

Particle displacement moves are performed in a manner similar to the ensembles we have just 

discussed.  A random particle is picked out of the two simulation boxes.  This move creates energy 

fluctuations in the subsystems. 

Volume exchange moves are performed in which one phase (simulation box) decreases in vol-

ume by an amount Δ𝑉 and the other phase increases in volume by exactly this amount.  Thus, 

volume is exchanged.  In the thermodynamic limit, as we have seen before, this results in equality 

of the average pressures between the two phases.  Upon exchanging volume, we can scale the 

particle positions in each phase as before in the 𝑁𝑃𝑇 ensemble.  The acceptance criterion for this 

kind of move follows from the probability distribution above and considerations similar to those 

discussed for the isothermal-isobaric ensemble: 

  

𝑃12
acc = min [1,

(𝑉𝐴 + Δ𝑉)𝑁𝐴(𝑉𝐵 − Δ𝑉)𝑁𝐵  

𝑉𝐴
𝑁𝐴𝑉𝐵

𝑁𝐵
𝑒−𝛽Δ𝑈𝐴−𝛽Δ𝑈𝐵] 

Here, the values of 𝑉𝐴, 𝑉𝐵, 𝑁𝐴, 𝑁𝐵  are those prior to proposing the move.  Δ𝑉 is the change in 

volume proposed for phase 1, chosen randomly in the range [−δ𝑉max, δ𝑉max].  The terms Δ𝑈𝐴 and 

Δ𝑈𝐵 are the changes in potential energy due to volume scaling in phases A and B, respectively. 

Particle exchange moves are performed in which one particle in one phase is removed and added 

to a random location in the other.  In the thermodynamic limit, this exchange of mass results in 

equality of the chemical potential between the two phases.  In practice, a particle exchange move 

resembles a simultaneous deletion and insertion move.  The acceptance criterion follows the 

microstate distribution above and is derived using ideas similar to those discussed for the GCMC 

ensemble: 

𝑃12
acc = min [1,

𝑁𝐴𝑉𝐵

(𝑁𝐵 + 1)𝑉𝐴
𝑒−𝛽𝛥𝑈𝐴−𝛽𝛥𝑈𝐵]         particle transferred 𝐴 → 𝐵 

𝑃12
acc = min [1,

𝑁𝐵𝑉𝐴

(𝑁𝐴 + 1)𝑉𝐵
𝑒−𝛽𝛥𝑈𝐴−𝛽𝛥𝑈𝐵]         particle transferred 𝐵 → 𝐴 
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The three kinds of moves are depicted in the following diagram, taken from [Panagiotopoulos, J. 

Phys.: Condens. Matter 12, R25 (2000)]: 

 

Running a Gibbs ensemble simulation 

Consider liquid-vapor equilibrium.  The phase diagram in the 𝑇 − 𝜌 plane might look something 

like: 

 

If the temperature and total system density [𝜌 = (𝑁𝐴 + 𝑁𝐵)/(𝑉𝐴 + 𝑉𝐵)] is within the two-phase 

region, a Gibbs ensemble simulation will have the following behavior: the volume and particle 

numbers in each simulation box will adjust so that one of the boxes will correspond to the liquid 

phase and one to the gas phase.  That is, the two subsystems will, in a sense, “phase-separate” 

into gas and liquid phases, although there is no explicit interface between them.  The reason for 

T

r

gas liquid

critical point

gas + liquid
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this behavior is that the phase-separation ultimately minimizes the free energy of the overall 

system. 

Gibbs ensemble simulations are extremely convenient because they enable one to map out very 

quickly the vapor-liquid phase diagram: 

1. Choose a temperature of interest 𝑇. 

2. Pick an overall density 𝜌 estimated to be somewhere deep within the two-phase region.  

Pick a system size, either 𝑉 or 𝑁, and then compute the value of the other variable using 

the density. 

3. Initialize the two simulation boxes with the same volume and number of particles. 

4. Equilibrate the simulations by performing a long run with particle displacements, volume 

exchanges, and particle exchanges. 

5. At the end of equilibration, one box should be the liquid phase and one should be the gas 

phase. 

6. Use a production period to compute the average properties of each phase, such as 

⟨𝑉𝑖⟩, ⟨𝑁𝑖⟩, ⟨𝜌𝑖⟩,  and ⟨𝑈𝑖⟩, where 𝑖 = 𝐺 or 𝐿. 

Notice that this approach also enables us to compute latent heats, since: 

ℎ𝑖 ≡
𝐻𝑖

𝑁𝑖
 

=
𝐸𝑖 + 𝑃𝑖𝑉𝑖

𝑁𝑖
 

=

3
2 𝑁𝑖𝑘𝐵𝑇 + 𝑈𝑖 + 𝑃𝑖𝑉𝑖

𝑁𝑖
 

All of the terms on the RHS of this equation can be computed from simulation averages. 

While the Gibbs ensemble is extremely attractive for computing phase equilibria, it has some 

notable limitations.  It tends to perform poorly for: 

• low temperatures – In such cases, the liquid phase is very dense and particle exchange 

moves that insert a molecule into the liquid phase tend not to be accepted. 

• near the critical point – Here, density fluctuations become very large and it becomes dif-

ficult to distinguish which simulation box corresponds to the gas versus the liquid phase.  

That is, both simulation boxes begin to explore both phases. 
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• for structured phases – Crystalline solids are difficult to treat using this approach, due to 

the particle insertion moves. 

In later lectures, we will examine a much more robust and statistically optimal method for com-

puting phase equilibrium curves based on histograms.  While the Gibbs ensemble is still widely 

used to study phase equilibria, histograms are now the state-of-the-art approach. 

Microcanonical Monte Carlo 
In the microcanonical ensemble, one specifies all extensive variables explicitly, 𝐸, 𝑉, 𝑁.  The mi-

crocanonical partition function is simply the density of states, 

Ω(𝐸, 𝑉, 𝑁) =
1

ℎ3𝑁𝑁!
∫ 𝛿[𝐻(𝐩𝑁 , 𝐫𝑁) − 𝐸]𝑑𝐫𝑁𝑑𝐩𝑁 

Here, the delta indicates a Dirac delta function.  Similar to the canonical ensemble, one can per-

form the integration over momenta space analytically.  This requires the mathematics of delta 

functions, but the result is fairly straightforward.  For a monatomic system, 

Ω(𝐸, 𝑉, 𝑁) =
1

ℎ3𝑁𝑁!
∫ 𝛿[𝐾(𝐩𝑁) + 𝑈(𝐫𝑁) − 𝐸]𝑑𝐫𝑁𝑑𝐩𝑁 

=
1

ℎ3𝑁𝑁!
∫ 𝛿 [

1

2𝑚
∑ 𝐩𝑖

2

𝑖

+ 𝑈(𝐫𝑁) − 𝐸] 𝑑𝐫𝑁𝑑𝐩𝑁 

To evaluate the integral over momenta, one makes the change of variables 𝑃2 = ∑ 𝐩𝑖
2

𝑖  and 

switches momentum space to 3𝑁 hyperspherical coordinates.  We will not examine the mathe-

matics of this transformation in detail.  The result is simply given: 

Ω(𝐸, 𝑉, 𝑁) =
1

Γ(3𝑁 2⁄ )𝑁!
(

√2𝜋𝑚

ℎ
)

3𝑁

∫[𝐸 − 𝑈(𝐫𝑁)]
3𝑁−2

2 𝜃[𝐸 − 𝑈(𝐫𝑁)]𝑑𝐫𝑁 

Here, 𝜃(𝑥) gives the Heavyside step function, 𝜃(𝑥 ≥ 0) = 1 and 𝜃(𝑥 < 0) = 0.  This function 

prevents imaginary numbers from appearing in the integral due to the term to its left, which 

entails a square-root operation.  The function Γ(3𝑁 2⁄ ) is the gamma function, and it returns a 

prefactor. 

This expression for the partition function shows that the configurational probability distribution 

for the microcanonical ensemble is given by 

℘(𝐫𝑁) ∝ [𝐸 − 𝑈(𝐫𝑁)]
3𝑁−2

2 𝜃[𝐸 − 𝑈(𝐫𝑁)] 
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Using this fact, we can devise a Monte Carlo simulation that performs simulations in the micro-

canonical ensemble: 

1. Specify 𝐸, 𝑉, 𝑁. 

2. Start with an initial configuration for which 𝑈(𝐫𝑁) < 𝐸.  If the potential energy of the 

initial configuration is greater than 𝐸, it has zero probability in the ensemble because 

there is no possible selection of momenta such that 𝑈 + 𝐾 = 𝐸 and 𝐾 ≥ 0 always. 

3. Perform single-particle displacement moves.  The acceptance criterion is follows from 

above: 

𝑃12
acc = min [1, (

𝐸 − 𝑈2

𝐸 − 𝑈1
)

3𝑁−2
2

𝜃(𝐸 − 𝑈2)] 

In other words, moves that would take the system to 𝑈2 > 𝐸 are outright rejected. 

MC simulations in the microcanonical ensemble are not frequently performed, but there may be 

particular cases where this approach is desirable (for example, to compute reaction pathway free 

energies in the microcanonical ensemble). 


