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Other free energy techniques ChE210D 

Today's lecture: various other methods for computing free energies, including ab-

solute free energies, beyond histogram techniques 

Perturbation approaches to free energies  
Perturbation techniques have a long history in statistical mechanics and were among the earliest 

methods used to compute free energy changes in molecular simulations.  They were pioneered 

by Born and Kirkwood in theory in the 1920s and 1930s.  In the 1950s, Zwanzig introduced the 

free energy perturbation (FEP) method in the context of Monte Carlo and molecular dynamics 

simulations.  

The basic idea of the method is to compute the free energy between a reference state and some 

perturbed state.  The perturbed state may include an additional particle, a slightly different po-

tential energy function, or a small change in temperature, for example. 

The FEP approach is highly general and can be applied to compute many kinds of free energies.    

Early implementations of the FEP method do not have as good statistical accuracy as multiple 

histogram reweighting techniques, although subsequent re-formulations have yielded ap-

proaches that are equally as accurate and, in some cases, identical to the Ferrenberg-Swendsen 

reweighting equations. 

Basic formalism 

In the following example, we will consider the free energy change as one perturbs the potential 

energy function in the canonical ensemble.  Initially the energy function is 𝑈0(𝐫𝑁) and we perturb 

it to 𝑈1(𝐫𝑁).  The earlier notes on histograms and free energies provided some examples of kinds 

of perturbations that might be considered.  One could also derive an expression in which we 

perturbed the temperature rather than the potential. 

The free energy difference between states 1 and 2 stems from a ratio of partition functions: 

𝛽𝐴1 − 𝛽𝐴0 = ln
𝑄0

𝑄1
 

= − ln
(

𝑍1

Λ(𝑇)3𝑁𝑁!
)

(
𝑍0

Λ(𝑇)3𝑁𝑁!
)

 

= − ln
∫ 𝑒−𝛽𝑈1(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
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We can now re-express the top integral with the following identity: 

𝛽𝐴1 − 𝛽𝐴0 = − ln
∫ 𝑒−𝛽𝑈1(𝐫𝑁)+𝛽𝑈0(𝐫𝑁)−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
 

= − ln
∫ 𝑒−𝛽Δ𝑈(𝐫𝑁)−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
 

Here, Δ𝑈(𝐫𝑁) = 𝑈1(𝐫𝑁) − 𝑈0(𝐫𝑁).  Notice that this expression is reminiscent of the configura-

tional distribution in state 0: 

℘0(𝐫𝑁) =
𝑒−𝛽𝑈0(𝐫𝑁)

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
 

Making this substitution, 

𝛽𝐴1 − 𝛽𝐴0 = − ln ∫ ℘0(𝐫𝑁)𝑒−𝛽Δ𝑈(𝐫𝑁)𝑑𝐫𝑁 

We can re-express this as an ensemble average in state 0: 

𝛽𝐴1 − 𝛽𝐴0 = − ln⟨𝑒−𝛽Δ𝑈⟩
0
 

This important result shows that we can compute the free energy difference between the two 

states by performing an average over configurations in state 0.  Practically, we can perform a 

simulation in state 0 in the canonical ensemble using, for example, a Monte Carlo simulation.  We 

would then average over the trajectory of that simulation the term 

𝑒−𝛽Δ𝑈 

which would require us to compute both the energies 𝑈1 and 𝑈0 in the ensemble.  Keep in mind, 

however, that the trajectory itself would only be guided by 𝑈0.  In other words, our acceptance 

criterion would only entail energies computed from 𝑈0. 

The FEP equation is asymmetric: it gives the free energy difference based on an average in only 

one of the ensembles, here state 0.  A similar derivation gives an expression if we use state 1 as 

the averaging ensemble: 

𝛽𝐴1 − 𝛽𝐴0 = ln⟨𝑒𝛽Δ𝑈⟩
1
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Statistical considerations 

Even though the above equations appear straightforward, the calculated free energy differences 

can have substantial errors due to the averaging over an exponential term.  To analyze this prob-

lem, let us rewrite the expression above in terms of the expected distribution ℘0(Δ𝑈) in state 0: 

𝛽𝐴1 − 𝛽𝐴0 = − ln⟨𝑒−𝛽Δ𝑈⟩
0
 

= − ln ∫ 𝑒−𝛽Δ𝑈℘0(Δ𝑈)𝑑Δ𝑈 

where 

℘0(Δ𝑈) =
∫ 𝛿[𝑈1(𝐫𝑁) − 𝑈0(𝐫𝑁) − Δ𝑈] 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
 

Considering this form of the free energy difference equation, we see that there are two compet-

ing terms: 

• 𝑒−𝛽Δ𝑈 grows very large for negative values of Δ𝑈 

• ℘0(Δ𝑈) is typically peaked at some intermediate value of Δ𝑈, and tapers to zero away 

from this. 

A typical graph of these functions might look like 

 

Notice that the free energy difference is given by the entire area under the dark purple curve.  

However, part of this curve lies in a region very much in the tails of the distribution of ℘0(Δ𝑈).  

These energy differences would be sampled very rarely in the simulation, but make a large con-

tribution to the integral due to the exponential.  In other words, a substantial portion of the FEP 

average depends on the rare events in the simulation of state 0. 

Δ𝑈 
𝑒−𝛽Δ𝑈℘0(Δ𝑈) 

℘0(Δ𝑈) 

𝑒−𝛽Δ𝑈 
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Practically, this limits the method to very small perturbations, i.e., where Δ𝑈 ≈ 0 for almost all 

configurations.  Large perturbations result in a large statistical error in the computed free energy 

differences. 

Bennett’s method 

One might perform an error propagation analysis on the FEP method to determine the expected 

error in the computed free energy difference as a function fo 𝑈0 and 𝑈1.  This idea led Bennett 

to develop an approach for optimizing the FEP expression so as to minimize the error.  This ap-

proach was originally called the acceptance ratio method, but is now often referred to as Ben-

nett’s method [Bennett, 1976].  

Bennett started with the following modification of the free energy equation: 

𝛽𝐴1 − 𝛽𝐴0 = − ln
∫ 𝑒−𝛽𝑈1(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
 

= − ln (
∫ 𝑒−𝛽𝑈1(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑤(𝐫𝑁)𝑒−𝛽𝑈0(𝐫𝑁)−𝛽𝑈1(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑤(𝐫𝑁)𝑒−𝛽𝑈0(𝐫𝑁)−𝛽𝑈1(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈0(𝐫𝑁)𝑑𝐫𝑁
) 

= − ln
⟨𝑤𝑒−𝛽𝑈1⟩

0

⟨𝑤𝑒−𝛽𝑈0⟩1

 

Here, 𝑤(𝐫𝑁) is an arbitrary weighting function.  The averages here imply two simulations and 

two averages: 

• A simulation in state 0 in which we find the average of the value 𝑤𝑒−𝛽𝑈1  over all trajectory 

configurations. 

• A simulation in state 1 in which we find the average of the value 𝑤𝑒−𝛽𝑈2  over all trajectory 

configurations. 

Notice that this expression is symmetric: both states 0 and 1 appear in equal roles. 

Bennett’s approach was to find an optimal value of the weighting function that minimizes the 

expected statistical error in the free energy difference.  He used standard error propagation rules 

to determine 𝜎𝛽(𝐴1−𝐴0)
2  and then minimized this variationally with respect to the function 𝑤(𝐫𝑁).  

The optimal weighting function, for minimum error, has the value: 

𝑤(𝐫𝑁) ∝ (𝑛0
−1𝑒−𝛽𝐴0−𝛽𝑈1(𝐫𝑁) + 𝑛1

−1𝑒−𝛽𝐴1−𝛽𝑈0(𝐫𝑁))
−1

 

Frenkel and Smit give a detailed derivation of this result.  Here, the constant of proportionality 

does not affect the statistical error.  The variables 𝑛0 and 𝑛1 give the number of trajectory 
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configurations used in the free energy average for states 0 and 1.  We will hereon out assume 

that this number is the same, so that: 

𝑤(𝐫𝑁) ∝ (𝑒−𝛽𝐴0−𝛽𝑈1(𝐫𝑁) + 𝑒−𝛽𝐴1−𝛽𝑈0(𝐫𝑁))
−1

 

Plugging this expression into the symmetric FEP average, we arrive at the following relationship 

for the free energy difference: 

𝛽Δ𝐴 = − ln

⟨
1

1 + 𝑒−𝛽Δ𝑈+𝛽Δ𝐴⟩
0

⟨
1

1 + 𝑒𝛽Δ𝑈−𝛽Δ𝐴⟩
1

 

Notice that the statistically optimal value for the free energy difference Δ𝐴 = 𝐴1 − 𝐴0 depends 

on the difference itself!  In practice, this equation is a self-consistent one: it can be solved or 

iterated until the free energy difference converges.   

Here, the Δ𝑈 terms mean two different things, depending on the corresponding average.  For 

the average in state 0, Δ𝑈 means the difference in energy 𝑈1 − 𝑈0 applied to configurations from 

the state 0 trajectory.  Similarly, for the average in state 1, Δ𝑈 means the difference in energy 

𝑈1 − 𝑈0 applied to configurations from the state 1 trajectory.  In practice, one typically saves 

trajectories and re-processes them with different energy functions to determine the values in 

each state. 

Importantly, notice that we now can no longer perform simple averages during our simulation 

runs to compute the quantities in brackets because we don’t know what the value of Δ𝐴 will be.  

Instead, we must keep lists of the energies, or keep trajectories and re-compute the energies 

later, in order to evaluate the averages as we solve the equation for Δ𝐴. 

Keep in mind that we must be aware of issues with precision in evaluating the averages and ex-

ponentials in the computer. 

Bennett’s method provides a statistically optimal estimator of the free energy difference be-

tween two states.  The equation above can be shown to be exactly identical to the Ferrenberg-

Swendsen multiple histogram reweighting technique in the limit that the histogram bin size goes 

to zero.   

Stratification 

Even with Bennett’s method, one can incur large errors in estimating free energy differences if 

the energy functions 𝑈0 and 𝑈1 are substantially dissimilar.  This is because there will be little 

overlap in the regions of phase space that the two methods explore.   
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To overcome this problem, one can divide the total free energy difference into a series of small 

steps in which the system hops gradually from state 0 to state 1.  Typically one introduces a 

coupling parameter 𝝀: 

𝑈 = (1 − 𝜆)𝑈0 + 𝜆𝑈1 

For 𝜆 = 0, the system is governed by the potential in state 0.  For 𝜆 = 1, the system is in state 1.  

For intermediate values of the coupling parameter, the energy function interpolates between the 

two.  

The idea of stratification is to gradually change the potential using 𝑚 intermediate values of 𝜆: 

𝜆𝑖 =
𝑖

𝑚 + 1
    where 𝑖 = 0,1,2 … , 𝑚 + 1 

Then, the free energy change for each increment in 𝜆 can be computed using simulations with 

the potential for 𝜆𝑖 and 𝜆𝑖+1: 

𝛽𝐴(𝜆𝑖+1) − 𝛽𝐴(𝜆𝑖) 

The overall free energy difference is the sum of the 𝑚 individual free energy differences: 

𝛽𝐴(𝜆 = 1) − 𝛽𝐴(𝜆 = 0) = ln
𝑍(𝜆 = 0)

𝑍(𝜆 = 1)
 

= ln (
𝑍(𝜆0 = 0)

𝑍(𝜆1)
×

𝑍(𝜆1)

𝑍(𝜆2)
×

𝑍(𝜆2)

𝑍(𝜆3)
× … ×

𝑍(𝜆𝑚)

𝑍(𝜆𝑚+1 = 1)
) 

= 𝛽 ∑ 𝐴(𝜆𝑖+1) − 𝐴(𝜆𝑖)

𝑚

𝑖=0

 

By choosing a large number of intermediate states 𝑚, the statistical error can be reduced since 

the perturbations between each neighboring state are smaller.  However, 𝑚 + 2 simulations 

must be performed in order to compute the total free energy difference, so better accuracy 

comes at the expense of more simulations. 

This approach is very similar to multiple histogram reweighting techniques in that we stitch data 

from a number of simulations together to produce a free energy difference, and that the simula-

tions must have good “overlap” with each other in order for this to work.  However, the stratifi-

cation method here only considers pairs of states in building up a net free energy difference, 

while the multiple histogram reweighting equations consider all states at once.  The latter are 

typically more accurate as a result, although the computations of the free energy differences can 

be more demanding. 
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Computing chemical potentials  
The chemical potential of system in the canonical ensemble has the following relationship with 

the Helmholtz free energy: 

𝜇 = (
𝜕𝐴

𝜕𝑁
)

𝑇,𝑉
 

However, the particle number is actually discrete, and thus we might write 

𝜇 = 𝐴(𝑇, 𝑉, 𝑁 + 1) − 𝐴(𝑇, 𝑉, 𝑁) 

Using the connection with the canonical partition function, we find 

𝛽𝜇 = ln
[
𝑍(𝑇, 𝑉, 𝑁)
Λ(𝑇)3𝑁𝑁!

]

[
𝑍(𝑇, 𝑉, 𝑁 + 1)

Λ(𝑇)3𝑁+3(𝑁 + 1)!
]
 

= ln
(𝑁 + 1)Λ3(𝑇)

𝑉
+ ln

𝑉 ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁+1)𝑑𝐫𝑁+1
 

= 𝜇𝑖𝑔 + ln
𝑉 ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁+1)𝑑𝐫𝑁+1
 

Here 𝜇𝑖𝑔 is the ideal gas part of the chemical potential, known analytically.  We are actually in-

terested in computing the excess chemical potential: 

𝛽𝜇𝑒𝑥 = ln
𝑉 ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁+1)𝑑𝐫𝑁+1
 

Another way to write this is to let the top integral contain a degree of freedom corresponding to 

an ideal gas particle that doesn’t have any energetic contributions: 

𝛽𝜇𝑒𝑥 = ln
∫ 𝑒−𝛽𝑈(𝐫𝑁)𝑑𝐫𝑁+1

∫ 𝑒−𝛽𝑈(𝐫𝑁+1)𝑑𝐫𝑁+1
 

We can actually formulate this problem in terms of a free-energy perturbation to the system.  

The perturbation is to “turn on” the interactions of the (𝑁 + 1)th particle with all of the other 

particles in the system. 

𝑈0(𝐫𝑁+1) = 𝑈(𝐫𝑁) 

𝑈1(𝐫𝑁+1) = 𝑈(𝐫𝑁+1) 
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That is, we convert particle 𝑁 + 1 from a noninteracting ideal gas particle (state 0) to an inter-

acting particle of the same kind as all of the others (state 1).  The excess chemical potential is the 

free energy associated with this change. 

Applying the free energy perturbation approach, we find that  

𝛽𝜇𝑒𝑥 = − ln⟨𝑒−𝛽Δ𝑈⟩
0
 

Here,  Δ𝑈 gives the energy of particle 𝑁 + 1 interacting with all of the other particles.  The aver-

age in state 0 takes place in the system of 𝑁 interacting and 1 ideal gas particle. 

Widom test particle insertion method 

How can we compute the chemical potential using the equation above?  Widom first proposed a 

method to do so that is known as the test particle approach.  It involves the following steps: 

• Perform a simulation with 𝑁 particles in the canonical ensemble.  This may be an MD or 

MC run. 

• Periodically pause the simulation and insert a test particle at a random location in the 

simulation box.  This procedure is equivalent to finding the location of the (𝑁 + 1)th ideal 

gas particle, since it would be present uniformly throughout the simulation box. 

• Compute the change in energy due to the particle insertion, Δ𝑈. 

• Remove the test particle and continue the simulation run as if the test had never oc-

curred. 

• Find the average ⟨𝑒−𝛽Δ𝑈⟩ over the course of the simulation run.  This average provides 

the chemical potential,  

𝛽𝜇𝑒𝑥 = − ln⟨𝑒−𝛽Δ𝑈⟩ 

The particle insertion method can be applied to other ensembles beyond the canonical one, alt-

hough the expression for the chemical potential is slightly different in each case.  Frenkel and 

Smit have a detailed discussion of the correct implementation in other ensembles. 

Statistical considerations 

As with the other asymmetric FEP equations, the expression here is subject to statistical uncer-

tainty if the inserted particle sufficiently perturbs the energy of the system.  It is very difficult to 

compute the chemical potential using the particle insertion method for systems that are: 
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• very dense – in these cases an inserted particle almost always produces a core overlap, 

which results in a large change Δ𝑈 

• directional interactions – if the inserted particle is a rigid molecule, an orientation must 

be chosen.  Systems that have highly-orientation dependent energies, like dipolar or hy-

drogen-bonded systems, will have large changes in Δ𝑈 depending on the orientation 

Test particle deletion method 

We could have also expressed the chemical potential using the expression: 

𝜇 = 𝐴(𝑇, 𝑉, 𝑁) − 𝐴(𝑇, 𝑉, 𝑁 − 1) 

and applying the other asymmetric FEP equation: 

𝛽𝜇𝑒𝑥 = ln⟨𝑒𝛽Δ𝑈⟩
1
 

Here, state 1 would correspond to 𝑁 interacting particles and state 0 to 𝑁 − 1 interacting and 

one ideal gas particle.  In a simulation, we could perform a random test deletion and compute 

the change in energy upon deleting a molecule Δ𝑈.  An average using this expression could also 

be used to compute the chemical potential. 

In practice, this approach tends to fail because of a much higher statistical error.  That is, the test 

deletion method has a much broader distribution of Δ𝑈 that makes states 0 and 1 have less over-

lap than would have been the case with an insertion.  Therefore, test particle deletion is rarely 

used to compute the chemical potential. 

Thermodynamic integration 
Thermodynamic integration (TI) is an approach to free energy calculations that has a long history 

in statistical mechanics and goes back to the early work of Kirkwood.  It is perhaps not quite as 

general as histogram-based techniques, since it requires one to compute derivatives of the Ham-

iltonian.  Nor does it provide as statistically accurate estimates of free energy differences.  How-

ever, often it is very straightforward to implement and can produce results quite fast. 

The basic idea of thermodynamic integration is that it is often very easy to compute the derivative 

of a free energy function from a simulation average.  Consider the Helmholtz free energy 

𝐴(𝑇, 𝑉, 𝑁).  It’s derivative with respect to volume is: 

(
𝜕𝐴

𝜕𝑉
)

𝑇,𝑁
= −𝑃 
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Thus, if we were able to compute the pressure as a function of 𝑉 for fixed 𝑇, 𝑁 we could integrate 

this expression to find the 𝑉-dependence of 𝐴: 

𝐴(𝑇, 𝑉1, 𝑁) − 𝐴(𝑇, 𝑉0, 𝑁) = ∫ 𝑃(𝑉)𝑑𝑉
𝑉1

𝑉0

 

Numerically, we could do this by: 

• Performing multiple simulations at different volumes 𝑉 between 𝑉0 and 𝑉1 and finding 

the average pressure from each using the virial. 

• Fitting the 𝑃(𝑉) curves to a suitable functional form. 

• Integrating the expression to find the free energy difference between 𝑉1 and 𝑉0. 

Similarly, we could compute the 𝑇-dependence of 𝐴 using the thermodynamic identity: 

(
𝜕(𝐴 𝑇⁄ )

𝜕(1 𝑇⁄ )
)

𝑉,𝑁

= 𝐸 

= 𝐾 + 𝑈 

=
3

2
𝑁𝑘𝐵𝑇 + 𝑈 

Integrating this expression, 

𝐴(𝑇1, 𝑉, 𝑁)

𝑇1
−

𝐴(𝑇0, 𝑉, 𝑁)

𝑇0
= − ∫

3
2 𝑁𝑘𝐵𝑇 + 𝑈(𝑇)

𝑇2
𝑑𝑇

𝑇1

𝑇0

 

= −
3

2
𝑁𝑘𝐵 ln (

𝑇1

𝑇0
) − ∫

𝑈(𝑇)

𝑇2
𝑑𝑇

𝑇1

𝑇0

 

In this case, we would perform simulations at different temperatures, and at each one we would 

compute the average potential energy for integrating this expression.  This would enable us to 

compute the free energy difference between two temperatures of interest. 

Formalism for changes in the energy function 

In the above examples, we considered only the free energy changes along the macroscopic pa-

rameters 𝑇 and 𝑉.  One can also use FEP to compute free energy changes as the potential energy 

function itself changes.  Consider the parameter 𝜆 to be a generic parameter of the potential 

energy function. 

The free energy of the system is: 
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𝐴 = −𝑘𝐵𝑇 ln
1

𝑁! Λ(𝑇)3𝑁
∫ 𝑒−𝛽𝑈(𝐫𝑁;𝜆)𝑑𝐫𝑁 

To use TI, we need to find the derivative of this expression with respect to 𝜆: 

𝑑𝐴

𝑑𝜆
= −𝑘𝐵𝑇

𝑑

𝑑𝜆
ln ∫ 𝑒−𝛽𝑈(𝐫𝑁;𝜆)𝑑𝐫𝑁 

= −𝑘𝐵𝑇
∫ −𝛽 (

𝑑𝑈
𝑑𝜆

) 𝑒−𝛽𝑈(𝐫𝑁;𝜆)𝑑𝐫𝑁

∫ 𝑒−𝛽𝑈(𝐫𝑁;𝜆)𝑑𝐫𝑁
 

= ⟨
𝑑𝑈

𝑑𝜆
⟩

𝜆
 

Here, the average gives the mean of the derivative of the potential energy function with respect 

to 𝜆, performed in the ensemble of a given value of 𝜆. This expression can now be integrated to 

find the free energy difference as a function of changes in 𝜆, for fixed values of 𝑇, 𝑉, 𝑁: 

𝐴(𝜆1) − 𝐴(𝜆0) = ∫ ⟨
𝑑𝑈

𝑑𝜆
⟩

𝜆
𝑑𝜆

𝜆1

𝜆0

  

Computation of the free energy difference then involves the following steps: 

• Multiple simulations are performed for different values of 𝜆 spanning 𝜆0 to 𝜆1. 

• For each simulation, the average ⟨
𝑑𝑈

𝑑𝜆
⟩

𝜆
is computed over the course of the simulation. 

• A curve is fitted to the derivative average as a function of 𝜆 and the integral is evaluated 

numerically. 

In particular, this approach can be used to compute free energy changes of the type considered 

for FEP techniques, when the energy function is modified from 𝑈0 to 𝑈1.  Here, 

𝑈 = (1 − 𝜆)𝑈0 + 𝜆𝑈1 

And the TI approach takes the form, 

𝐴(𝜆 = 1) − 𝐴(𝜆 = 0) = ∫ ⟨𝑈1 − 𝑈0⟩𝜆𝑑𝜆
1

0

 

Formalism for reaction coordinates 

It is also possible to use TI to compute free energy changes along arbitrary microscopic reaction 

coordinates.  Consider a generalized reaction coordinate 
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𝜉(𝐫𝑁) 

This function could return the distance between two atoms, the number of bonds, the radius of 

gyration… anything depending on the configurational coordinates alone.  To perform thermody-

namic integration, we need to find examine the Helmholtz free energy as a function of the reac-

tion coordinate.  This is simply the potential of mean force (PMF): 

 𝐹(𝜉) = 𝐴(𝑇, 𝑉, 𝑁, 𝜉) 

Implied in 𝐹(𝜉) are constant values of 𝑇, 𝑉, 𝑁.  Per our earlier discussion of PMFs, its microscopic 

definition is 

𝐹(𝜉) = −𝑘𝐵𝑇 ln ∫ 𝑒−𝛽𝑈(𝐫𝑁)𝛿[𝜉 − 𝜉(𝐫𝑁)]𝑑𝐫𝑁 

To use thermodynamic integration, we need to find the derivative of 𝐹(𝜉).  We previously 

showed that this relates to the average force along the direction 𝜉: 

𝑑𝐹(𝜉)

𝑑𝜉
= −⟨𝑓𝜉⟩

𝜉
 

with the definition 

𝑓𝜉 = −
𝑑𝐫𝑁

𝑑𝜉
⋅ ∇𝑈 

=
𝑑𝐫𝑁

𝑑𝜉
⋅ 𝐟𝑁 

Therefore, the free energy expression takes the form 

𝐹(𝜉1) − 𝐹(𝜉0) = − ∫ ⟨𝑓𝜉⟩
𝜉

𝑑𝜉
𝜉1

𝜉0

 

This equation implies that we perform multiple simulations in which the system is constrained to 

a certain value of the reaction coordinate 𝜉.  In each simulation, we compute the force along 𝜉.   

Consider the example of a solute in solution interacting with a surface, where the distance 𝑧 

between the solute and surface is the reaction coordinate.  Here, this expression would take the 

form: 

𝐹(𝑧1) − 𝐹(𝑧0) = − ∫ ⟨𝑓𝑧,solute⟩
𝑧
𝑑𝑧

𝑧1

𝑧0
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Here, ⟨𝑓𝑧,solute⟩
𝑧
 is the average force acting on the solute in the 𝑧 direction while the solute is 

constrained to sit at a fixed value of 𝑧 from the surface.  This net force extends from interactions 

with all of the other atoms in the system. 

How can we constrain this distance in the simulations that compute this average?  In a MC simu-

lation, we never propose displacement moves in the 𝑧 direction of the solute.  In a MD simulation, 

we never update the 𝑧-component of the position of the solute when performing the integration 

step. 

Absolute free energies and reference states  
So far, we have only discussed methods for computing free energy changes.  At a fundamental 

level, it is not possible to specify the absolute entropy or free energy of a classical system.  In-

stead, we need to make contact with a quantum-mechanical model for which we know the quan-

tum-mechanical, absolute entropy or free energy. 

Our strategy will be to compute the free energy difference between our system and a reference 

state for which we know the absolute free energy.  There are two models for which the absolute 

free energy is known analytically: the ideal gas and the ideal harmonic (Einstein) crystal. 

For disordered phases like liquids and gases, we can compute the absolute free energy by con-

necting to an ideal gas reference state.  That is, we find the difference in free energy between 

the current state of interest and one that is high-temperature and low-density.  Typically, we 

choose two paths to do this: 

• integration at constant density to high temperature 

• integration at constant (high) temperature to low density 

Any one of the free energy methods we have discussed can be used to perform these calcula-

tions, including flat histogram techniques, free energy perturbation (with stratification), and 

thermodynamic integration.  If the latter is used, one must avoid passing through a phase transi-

tion as these methods fail for such cases. 

For ordered phases like crystalline solids, one connects the system and current state to an ideal 

harmonic crystal reference state.  This is a system in which each atom is non-interacting and 

constrained to its lattice site by a harmonic restraining potential.  To find the free energy between 

the current system and the reference state, one computes the free energy change along the pa-

rameter 𝜆: 

𝑈 = (1 − 𝜆)𝑈true + 𝜆𝑈harmonic 
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In other words, the true system potential energy function is perturbed to the harmonic equiva-

lent.  Again, flat histogram techniques, free energy perturbation (with stratification), and ther-

modynamic integration can be used to compute this free energy change. 


