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Review of probability ChE210D 

Today's lecture: basics of probability and statistics; both discrete and continuous 

distributions.  

Probability and statistics 

Probability distributions 

The behavior of systems at equilibrium is described by molecular statistical distribution functions.  

Therefore, we now briefly review some properties of statistics. 

Let 𝑔 be a discrete variable.  Denote a probability distribution ℘(𝑔) as the probability that 𝑔 will 

take a given value.  This distribution is normalized such that 

∑ ℘(𝑔𝑖)

𝑖

= 1 

where the sum proceeds over all allowable, distinct values of 𝑔.  Here, ℘(𝑔) is dimensionless 

since it returns a probability. 

On the other hand, let 𝑥 be a continuous variable.  Then, we define a probability distribution 

℘(𝑥) such that: 

∫ ℘(𝑥)𝑑𝑥 = 1 

Note that in order to be dimensionally consistent, ℘(𝑥) must have inverse dimensions of 𝑥, due 

to the presence of the 𝑑𝑥 term.  Thus, ℘(𝑥) becomes a probability density.  In this interpretation 

we think of the combined expression ℘(𝑥0)𝑑𝑥 as the probability (dimensionless) that 𝑥 takes on 

a value in the range 𝑥0 − 𝑑𝑥/2 to 𝑥0 + 𝑑𝑥/2. 

In simulation, we are often interested in measuring distribution functions.  Typically this is ac-

complished using histograms.  A histogram is simply a counting of the different numbers of times 

that we see a variable with different values.  This is straightforward for discrete variables.   

For continuous distributions, however, we must generate a discrete approximation to them by 

creating a histogram with bins of a finite width.  For example, we may make a histogram of the 

energy with a bin width of 0.5 kcal/mol.  The histogram bin for the range 0-0.5 kcal/mol would 

count the number of times we observed an energy in that range, similar for 0.5-1.0 kcal/mol, and 

so on and so forth. 
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Let the histogram bin width be Δ𝑥 and let 𝐻(𝑥) be the number of times we observe 𝑥 with values 

between 𝑥 − Δ𝑥/2 and 𝑥 + Δ𝑥/2.  Then, our discrete distribution is 

℘̃(𝑥) =
𝐻(𝑥)

Δ𝑥 ∑ 𝐻(𝑥′)𝑥′
 

Here, the use of the tilde indicates that the probability distribution is a discrete approximation to 

a continuous one.  We can recover the continuous one in the limit: 

℘(𝑥) = lim
Δ𝑥→0

𝐻(𝑥)

Δ𝑥 ∑ 𝐻(𝑥′)𝑥′
 

There is always a tradeoff in simulations: as the histogram bin size Δ𝑥 grows smaller, our discrete 

approximate becomes increasingly continuous-like.  However, the tradeoff is that the number of 

counts in any one histogram bin becomes very small, and statistical accuracy grows poor unless 

we extend the length of our simulation. 

Multivariate distributions 

The joint probability distribution for multiple variables indicates the probability that all variables 

will simultaneously attain a given value.  For example, for two discrete variables 𝑔 and 𝑓,  

℘(𝑔 = 𝑔0, 𝑓 = 𝑓0) 

gives the joint probability that a measurement will occur in which it is found that 𝑔 has value 𝑔0 

and 𝑓 has 𝑓0.   

If we consider continuous variables 𝑥 and 𝑦, then 

℘(𝑥0, 𝑦0)𝑑𝑥𝑑𝑦 

is the joint probability that we see an event with 𝑥 in the range 𝑥0 ± 𝑑𝑥/2 and 𝑦 in the range 

𝑦0 ± 𝑑𝑦/2.  Notice that ℘(𝑥, 𝑦) has inverse dimensions of both 𝑥 and 𝑦. 

We can extract single-variable distributions from multiple variable ones by summing or integrat-

ing over possibilities for the other variables: 

℘(𝑔) = ∑ ℘(𝑔, 𝑓)

𝑓

 

℘(𝑥) = ∫ ℘(𝑥, 𝑦)𝑑𝑦 

Notice that ℘(𝑥) now has inverse dimensions of only 𝑥, as we would expect. 
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If two variables are completely independent, then their joint probability is simply the product of 

their individual probabilities: 

℘(𝑥, 𝑦) = ℘(𝑥)℘(𝑦)        (independent variables) 

The conditional probability is the probability of a variable value given that some other observa-

tion has been made.   For example,  

℘(𝑔|𝑓)    or    ℘(𝑔; 𝑓) 

is the probability distribution for 𝑔 given a particular observed value of 𝑓.  This distribution can 

be related to the joint and single-variable distributions by: 

℘(𝑔|𝑓) =
℘(𝑔, 𝑓)

℘(𝑓)
 

Identical expressions apply to continuous variables. 

Distribution moments 

We can compute the average value of a distribution variable.  For example, 

〈𝑥〉 = ∫ 𝑥℘(𝑥)𝑑𝑥 

The variance is given by: 

𝜎𝑥
2 = 〈(𝑥 − 〈𝑥〉)2〉 

= 〈𝑥2 − 2𝑥〈𝑥〉 + 〈𝑥〉2〉 

= 〈𝑥2〉 − 2〈𝑥〉〈𝑥〉 + 〈𝑥〉2 

= 〈𝑥2〉 − 〈𝑥〉2 

with 

〈𝑥2〉 = ∫ 𝑥2℘(𝑥)𝑑𝑥 

What is the expectation value of some variable 𝐴 that is a function of an observable 𝑥?  To com-

pute such a property, we integrate the distribution: 

〈𝐴〉 = ∫ 𝐴(𝑥)℘(𝑥)𝑑𝑥 

The variance in 𝐴 is similarly found: 

𝜎𝐴
2 = 〈(𝐴 − 〈𝐴〉)2〉 
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= 〈𝐴2〉 − 〈𝐴〉2 

= ∫ 𝐴(𝑥)2℘(𝑥)𝑑𝑥 − [∫ 𝐴(𝑥)℘(𝑥)𝑑𝑥]
2

 

If we compute 𝜃 = 〈𝑥〉 using only a finite number of independent observations 𝑛, such that 

𝜃 =
∑ 𝑥𝑖

𝑛
 

we can also compute the expected variance in 𝜃, 𝜎𝜃
2.  This is called the standard error of the 

mean.  As 𝑛 → ∞, we expect 𝜎𝜃
2 → 0.  That is, as we take more and more samples, we expect our 

approximation to the underlying distribution average to grow more and more accurate.  Under 

the assumption of independent observations, 

℘(𝜃) = ∏ ℘(𝑥𝑖) 

𝜎𝜃
2 = 〈𝜃2〉 − 〈𝜃〉2 

Working through the math leads to, 

𝜎𝜃
2 =

𝜎𝑥
2

𝑛
 

Thus, if we are trying to find the average of a distribution, our accuracy increases as the square 

root of the number of independent samples we take. 

Typically we take measurements at different points in time in a molecular simulation.  If we take 

them too frequently, the measurements will not be independent but will be highly correlated.  

The above expression can be generalized to: 

𝜎𝜃
2 =

𝜎𝑥
2

𝑛
(1 +

2𝜏𝑥

Δ𝑡
) 

Here, 𝜏𝑥 is the relaxation time or correlation time for the variable 𝑥, and Δ𝑡 is the spacing in time 

at which we take measurements.  This equation shows that the standard error of the mean can 

be much larger than what we would expect for independent measurements if the time intervals 

are not appreciably larger than the relaxation time. 
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Microstate probability distributions in classical systems 

Basic concepts 

In the classical description, we describe a system by the positions and momenta of all of the 

atomic nuclei: 

𝐫𝑁 = (𝑥1, 𝑦1, 𝑧1, 𝑥2, … , 𝑦𝑁 , 𝑧𝑁) 

𝐩𝑁 = (𝑝𝑥,1, 𝑝𝑦,1, 𝑝𝑧,1, 𝑝𝑥,2, … , 𝑝𝑦,𝑁, 𝑝𝑧,𝑁) 

A microstate is just one “configuration” of the system.  In a classical system, one microstate is 

characterized by a list of the 3𝑁 positions 𝐫N and 3𝑁 momenta 𝐩𝑁, for a total of 6𝑁 pieces of 

information.  For a microstate 𝑚 we might use the notation (𝐩𝑚
𝑁 , 𝐫𝑚

𝑁) to indicate specific values 

of these variables. 

At equilibrium, the bulk properties of a system are time-invariant.  We might construct a micro-

scopic probability distribution function that describes the probability with which we might see 

a given classical microstate 𝑚 at any one instance in time.  We have that 

℘(𝐩𝑚
𝑁 , 𝐫𝑚

𝑁)𝑑𝐩𝑁𝑑𝐫𝑁 

gives the probability of microstate 𝑚.  That is, ℘(𝐩𝑚
𝑁 , 𝐫𝑚

𝑁)𝑑𝐩1 … 𝑑𝐩𝑁𝑑𝐫1 … 𝑑𝐫𝑁 is proportional to 

the continuous joint probability that the system is at a microstate that lies between 𝑝1,𝑥 −

𝑑𝑝1,𝑥 2⁄  and 𝑝1,𝑥 + 𝑑𝑝1,𝑥 2⁄ , 𝑝1,𝑦 − 𝑑𝑝1,𝑦 2⁄  and 𝑝1,𝑦 + 𝑑𝑝1,𝑦 2⁄ , and so on and so forth.  In other 

words, the probability corresponds to a microstate within a differential element 

𝑑𝐩1 … 𝑑𝐩𝑁𝑑𝐫1 … 𝑑𝐫𝑁 centered around (𝐩𝑚
𝑁 , 𝐫𝑚

𝑁).   

The particular form of the distribution function ℘(𝐩𝑁 , 𝐫𝑁) depends on the conditions at which a 

system is maintained, i.e., the particular statistical mechanical ensemble.  Systems can either be 

at: 

constant 𝐸 or constant 𝑇 (exchanging 𝐸 with a heat bath / energy reservoir) 

constant 𝑉 or constant 𝑃 (exchanging 𝑉 with a volume reservoir) 

constant 𝑁 or constant 𝜇 (exchanging 𝑁 with a particle bath) 

We will discuss these ensembles in more depth as we progress through different simulation 

methods.  As an example, in the canonical ensemble (constant T, V, N), the probability for a spe-

cific structure / configuration 𝐫𝑚
𝑁 is proportional to the Boltzmann factor: 

℘(𝐫𝑁) ∝ 𝑒
−

𝑈(𝐫𝑁)
𝑘𝐵𝑇 = 𝑒−𝛽𝑈(𝐫𝑁) 
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where 𝑈(𝐫𝑁) gives the potential energy of that configuration, which in simulation is determined 

by the force field. 

Very often we are interested in the distribution of some structural quantity or order parameter, 

such as the distance between two molecules.  These distributions can be obtained formally with 

delta functions.  Consider the distance 𝑟12 between particles 1 and 2: 

℘(𝑟12) = ∫ ℘(𝐫𝑁)𝛿[𝑟12 − |𝐫1 − 𝐫2|]𝑑𝐫𝑁 

Other references for statistical mechanics 

Though a detailed review of statistical mechanical concepts is beyond this course, it closely fol-

lows material from my graduate level text book: 

Thermodynamics and Statistical Mechanics: An Integrated Approach 

M. Scott Shell, Cambridge University Press, 2015 

The following chapters are particularly relevant to this course: 

Chapters 3, 4, 5, 7, 16, 17, 18, 19, and 22 

 

The following two classic statistical mechanics texts are also highly recommended: 

Statistical Mechanics 

Donald A. McQuarrie, University Science Books, 2000 (2nd edition) 

This is a classic statistical mechanics text, and McQuarrie does an excellent job of laying out clear, 

concise explanations of the subject material.  It serves well as both an introduction to the subject 

and a reference for specific models and theoretical techniques.  In this course, we will cover material 

in parts of Chapters 1-3, 5, 7, and 9.  This book is also frequently used as a primary text in ChE 210B.   

 

An Introduction to Statistical Thermodynamics 

Terrell Hill, Dover Books, 1987 

This very inexpensive paperback is a tour-de-force in laying out the foundations and early theoret-

ical advancements of statistical mechanics.  Hill takes care to discuss many of the subtleties that 

other texts glance over, and provides detailed derivations for major theories.  The density of mate-

rial in the book often necessitates careful study and re-reading at first, but it is an essential reference 

for anyone involved in research broadly related to molecular thermodynamics.  In the course, we 

will cover material in parts of Chapters 1-4 and 6. 

 


