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Department of Chemical Engineering ChE 210D 
University of California, Santa Barbara Fall 2019 

 
Exercise 2 

Due: Thursday, 10/17/19 
 
Objective: To learn how to compile Fortran libraries for Python, and to write a short Python 

code to perform energy minimization using the conjugate-gradient method. 
 
The term “clusters” denotes small, stable packings of (often spherical) particles.  For years, 
many groups have been interested in studying the geometries and energetics of clusters of 
objects ranging in size from atoms to small colloidal particles in the nanometer to micrometer 
scale.  Cluster analyses are instrumental to understanding a wide range of physical phenomena, 
including the structure of solids, diffusion in dense liquids, aggregation of colloidal and other 
particles in solution, nanostructured materials, and the self-assembly behavior of many 
synthetic and biomolecular systems. 
 
A cluster is characterized by the number of particles and the energetic interactions between 
them.  For attractive spherical particles, such as those that might be modeled by the Lennard-
Jones interaction, it is found that there are cluster sizes of particularly exceptional stability.  The 
so-called magic cluster numbers correspond to cluster sizes where the packing of atoms is most 
efficient and can reach a particularly stable configuration.  The most stable magic clusters are 
built from an icosahedral geometric arrangement of the particles.  The first few magic cluster 
sizes in this series are 13, 19, 38, 55, and 75.   
 
To find stable packings of particles, we first build an interaction model using the dimensionless 
Lennard-Jones (LJ) potential: 

𝑈∗ = ∑ 4(𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)

𝑖<𝑗

 

 
We can then start with a random configuration of particles and use an energy-minimization 
algorithm to find a stable structure of low energy.  However, because the number of local 
minima is so large, we will need to repeat this procedure for a number of times starting from 
different random configurations in order to locate the global minimum. 
 
In addition, for the minimization procedure to work, we need to add a very weak biasing 
potential that pulls our particles towards the origin.  This potential helps favor a single cluster, 
rather than multiple separate ones, during the minimization procedure.  Without it, the LJ 
potential does not have sufficiently long-ranged interactions to pull together atoms that are 
separated by several units of distance.  The biasing potential is harmonic such that our total 
force field is: 

𝑈∗ = ∑ 𝛼|𝐫𝑖|
2
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Here, 𝛼 = 0.0001𝑁−2 3⁄  is a very small parameter.  The scaling is chosen so that the average 
energy due to this term for a cluster of 𝑁 particles is constant. 
 
In this assignment, you will perform conjugate gradient minimization of Lennard-Jones 
particles, initially randomly distributed in space.  Part of the code has already been written for 
you, including the Fortran library that computes the pairwise interaction energies & forces and 
the basic Python routine for performing the line search. 
 
Part a 
Download from the course website the files ex2lib.f90 and ex2.py.  Place these files in a new 
path on your computer where you will store your code and perform your computations. Then, 
compile the pre-written Fortran library using f2py.  On a Windows machine, you should use: 
 

c:\mydir> f2py –c –m ex2lib ex2lib.f90 --fcompiler=gnu95 --compiler=mingw32 

 
On other systems, you might delete the --compiler=mingw32 option altogether, or replace it 
with your favorite C compiler (e.g., --compiler=gcc). 
 
Part b 
The file ex2.py is a template for your code that already has some code written in it.  Take a look 
at the existing code to learn what it is doing.  Then, write code for the following functions: 
 

function:  

 InitPositions(N, L) 

description: 

 Returns an array of initial positions of each atom, placed 

randomly within a cubic box of dimensions L 

arguments:  

 N: number of atoms 

 L: box width 

returns: 

 Pos: (N,3) array of positions 

 
function:  

 ConjugateGradient(Pos, dx, EFracTolLS, EFracTolCG) 

description: 

 Performs a conjugate gradient search to find an energy minimum. 

arguments:  

 Pos: starting positions, (N,3) array 

 dx: initial step amount, a float 

 EFracTolLS: fractional energy tolerance for line search 

 EFracTolCG: fractional energy tolerance for conjugate gradient 

returns: 

 PEnergy: value of potential energy at minimum 

 Pos: minimum energy (N,3) position array 

 
For your conjugate gradient algorithm, keep the following points in mind: 
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• A line search function has already been written in the template file, and you will call this 
from your algorithm.   

• You can get the potential energy and forces array using the library module: 
PEnergy, Forces = ex2lib.calcenergyforces(Pos) 

• Your first line search direction should be the force vector.  Subsequent line search 
directions 𝑖 should be found using the conjugate gradient expressions: 

𝐝𝑖
𝑁 = 𝐟𝑖

𝑁 + 𝛾𝑖𝐝𝑖−1
𝑁            where  𝛾𝑖 =

(𝐟𝑖
𝑁 − 𝐟𝑖−1

𝑁 ) ⋅ 𝐟𝑖
𝑁

𝐟𝑖−1
𝑁 ⋅ 𝐟𝑖−1

𝑁  

• You should continue successive line searches until the fractional change in energy found 
after successive searches is less than the tolerance EFracTolCG,  
|𝑈𝑖 − 𝑈𝑖−1| < EFracTolCG × |𝑈𝑖|. 

 
In debugging your code, you may want to insert print statements throughout to see the 
progression of the potential energy during the minimization iterations. 
 
Part c 
Write module-level code that systematically loops from 𝑁 = 2 to 𝑁 = 25 (inclusive).  For each 
particle number, your code could should do the following: 

• Perform 𝐾 minimizations, each one starting from a different random configuration of 
particles.  The 𝐾 minimized energies should be put in a list. 

• Display the minimum, average, and standard deviation of the minimized energies for the 
𝐾 trials. 

 
For your simulation runs, use the following parameters (typical for this kind of system): 

• EFracTolLS = 1.e-8 

• EFracTolCG = 1.e-10 

• the step size dx = 0.001 

• For placing particles initially in a cubic volume 𝑉 = 𝐿3, choose 𝐿 such that the average 
number density of particles (𝑁/𝑉) is equal to 0.001. 

 
Part d 
Plot the minimum and average energies as a function of 𝑁 for each of 𝐾 = 100, 1000, and 
10000.  Your simulations may take several hours to finish for the last case.  Can you estimate 
where you have been able to find the global minimum?  Note: you can turn on real-time 
visualization of the minimization if you have VPython installed, which should be included with 
Python(x,y).  Set the variable UseVisual = True in the code template and download the module 
atomvis.py from the course website and place it in the same folder as your script.  However, 
visualization will slow your code by 10-20%. 
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Part e 
Compare your results to the known global minimum energies, taken from [Leary, J. Global 
Optimization 11, 35 (1997)] .  You can download these values from the course website.  Add 
this curve to your graph.  Why might your results be higher? 
 

𝑁 −𝑈min 𝑁 −𝑈min 𝑁 −𝑈min 
2 1.000 10 28.4225 18 66.5309 

3 3.000 11 32.7660 19 72.6598 

4 6.000 12 37.9676 20 77.1770 

5 9.1038 13 44.3268 21 81.6846 

6 12.7120 14 47.8451 22 86.8090 

7 16.5054 15 52.3226 23 92.8445 

8 19.8215 16 56.8157 24 97.3488 

9 24.1134 17 61.3180 25 102.3727 

 
Part f 
From simple macroscopic arguments, we would expect that the energy of a cluster would scale 
with both the surface area (via a surface tension) and volume (via a bulk energy density).  Thus, 
we could model the global energy minimum as 
 

𝑈macro = 𝑎 + 𝑏𝑁
2
3 + 𝑐𝑁 

 
Find the constants 𝑎, 𝑏, 𝑐 by fitting your minimum energy data in the 𝐾 = 10000 case.  This 
fitting can be done by least-squares minimization using the Solver function in Excel, or you can 
use any other numerical software of your choice.  Then, plot the difference between the true 
minimum energy and the expected macroscopic energy 𝑈 − 𝑈macro as a function of 𝑁.  Can you 
identify the magic numbers 13 and 19, which should correspond to lower energies than 
expected from the macroscopic scaling estimate?  
 
Part g – ADVANCED TRACK 
For the case in which 𝑁 = 13 and 𝐾 = 10000, add to your Python code a routine that will 
make a list of all of the unique energy values found from the 𝐾 minimizations.  Because your 
minimization routine is finite and will not return exact minimum energies, you will have to test 
whether or not two energies are within numerical tolerance.  You can use the numpy function 
allclose(val1, val2, rtol, atol) for this purpose.  This function will return True if val1 and val2 
have a relative (fractional) difference less than rtol and an absolute difference less than atol.  
Use atol=1.e-4 and rtol=1.e-6 in your code.  Then, sort the list from minimum to maximum 
energy.  Make a plot of the energies as a function of their rank (i.e., 0 for the minimum energy, 
1 for the next highest, 2 for the next, and so on) for rank 0 to 200.  Also, indicate the number of 
unique minima found.  For comparison, Doye and coworkers [Doye, Miller, and Wales, J. Chem. 
Phys. 111, 8417 (1999)] used advanced minima-finding algorithms to determine that there are 
1467 unique minima.   
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Part e – ADVANCED TRACK 
How do the magic numbers change if the Lennard Jones particles are part of a polymer?  In 
other words, consider a potential of the form: 
 

𝑈∗ = ∑ 4(𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)

𝑖+1<𝑗 

+ ∑
𝑘

2
(𝑟𝑖𝑗 − 𝑟0)

2

𝑖+1=𝑗

 

 
where 𝑘 = 3000 and 𝑟0 = 1.  Repeat part (f) for this case.  Based on physical intuition, do you 
expect there to be more or fewer minima for the polymer versus individual LJ particles? 
 
What to turn in 
For the assignment, submit a short, typed summary of your results, clearly indicating the 
problem components.  In addition, print a copy of your Python code for reference and attach it 
to the back of these. 
 


