
Department of Chemical Engineering ChE 210D
University of California, Santa Barbara Fall 2019

Exercise 3

Due: Tuesday, 10/29/19

Objective: To learn how to write & compile Fortran libraries for Python, to perform a basic
molecular dynamics simulation, and to compute thermodynamic and kinetic
property averages from it.

A simple model of a linear polymer is the Lennard-Jones chain. An atomic system of such chains

interacts according to the following (dimensionless) potential energy function:

𝑈∗ = ∑ 4(𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)

𝑖<𝑗 ,𝑖𝑗 not bonded

+ ∑
𝑘

2
(𝑟𝑖𝑗 − 𝑟0)

2

𝑖<𝑗 ,𝑖𝑗 bonded

Here, the 𝑖 and 𝑗 are indices over atoms in the system. Make the following definitions:

𝑀 – number of monomers (LJ atoms) per polymer

𝑁poly – number of polymers in the simulation cell

𝑁 = 𝑀𝑁poly – number of total atoms in the system

Notice that the potential energy function involves two parameters: 𝑘 is the force constant for

harmonic bonds between adjacent atoms in the same polymer and 𝑟0 is the equilibrium bond

distance. We will take 𝑘 = 3000 and 𝑟0 = 1, which are standard in the literature.

Lennard-Jones chains have been studied extensively as models of polyatomic molecules and very

short polymers. These systems have suggested scaling laws for various properties as a function

of polymer length. In particular, Reis and coworkers [Reis et al., Fluid Phase Equilibria 221, 25

(2004)] have evaluated the self-diffusion coefficient for systems of 𝑀 = 2,4,8,16.

In this assignment, you will develop a molecular dynamics simulation of Lennard-Jones chains

and use this to compute the self-diffusion coefficient for several polymer lengths and

temperatures. To assist you, some of the code has already been written, but you are free also to

develop your code from scratch should you choose to do so. The template files can be found on

the course website as ex3lib.f90 and ex3.py.

Part a
Edit the ex3lib.f90 file to add a function CalcEnergyForces that computes the total potential

energy and the force on each atom for a given configuration. Then add a second function

CalcEnergy (copying and editing the code for the first) that only computes the total potential

energy. The reason you will add two functions is that you will energy-minimize your initial

configurations before performing molecular dynamics and the line search does not require the

forces, which we want to avoid computing for efficiency reasons.

In the pairwise interaction loop, you can determine whether or not two atoms i and j are bound

by the following kind of code:

do i = 0, NAtom - 1

 do j = i + 1, NAtom - 1

 if (j == i + 1 .and. mod(j, M) > 0) then

 !this is a bonded interaction;

 !use the harmonic bond potential here

 else

 !this is a nonbonded interaction;

 !use the Lennard-Jones potential here

 endif

 enddo

enddo

The code mod(j, M) will return 0 every time the i and j=i+1 particle are in different molecules.

This is because when the modulo of j with M is zero, j is a multiple of M and it therefore is the

first atom of a polymer while i is the last of the previous.

Your simulation will take place under periodic boundary conditions in a cubic box of side length

𝐿. Therefore, you will need to compute the minimum image distance. In Fortran,

rij = rij - L * dnint(rij / L)

where rij is the vector (a length-3 array) of position differences.

For the nonbonded interactions, you should cut and shift the Lennard-Jones potential at a

distance of 𝑟𝑐. Do not apply a tail correction.

Keep in mind several efficiency considerations. You do not want to compute the square root of

the distance unless you have to (e.g., the Lennard-Jones potential doesn’t require it, but the

harmonic potential does). Before the pairwise loop, you should precompute any constants, such

as the Lennard-Jones shift value.

Compile your Fortran file into a Python library using f2py. You may want to compile it first using

gfortran to detect any errors / bugs. This is covered in the handout on compiling routines using

f2py.

Part b
Edit the Python file ex2.py to develop a molecular dynamics code. Several functions have been

written for you already and are described in the docstrings and comments.

Your code for a molecular dynamics run should do the following:

• Initially place atoms on a cubic lattice. You can use the existing function

InitPositions in the template file.

• Energy-minimize the initial configuration using the conjugate-gradient method. This is for

numerical stability when starting the MD integration .

• Use the velocity Verlet integrator to perform a molecular dynamics run. The atomic

velocities should be rescaled every RescaleFreq integration steps to achieve a target

temperature 𝑇. At any step number i, you can test whether or not you should rescale the

velocities using the modulo operator (e.g., i % RescaleFreq == 0).

Use the following settings:

• 𝑁 = 240

• 𝜌 = 𝑁 𝑉⁄ = 0.8 so that 𝐿 = (𝑁 𝜌⁄)1 3⁄

• Δ𝑡 = 0.001

• 𝑇 = 1.0

• 𝑟𝑐 = 2.5

Perform simulations for 𝑀 = 2, 4, 6, 8, 12, 16, where 𝑁poly = 𝑁 𝑀⁄ = 240 𝑀⁄ . On a single graph,

add a series for each that gives the potential energy as a function of time for 𝑡 = 0 to 𝑡 = 2.

(2,000 integration steps).

Part c
Consider the 𝑀 = 8 simulation run. After 𝑡 = 2, turn off velocity rescaling and monitor the total

energy, which should be constant with time. Compute the fractional fluctuation in total energy

𝜎𝐸 ⟨𝐸⟩⁄ as a function of the time step Δ𝑡 = 0.0001, 0.0002, 0.0004, 0.0008, 0.0016, 0.0032,

0.0064, 0.0128. Place your results on a second graph that is a log-log plot of 𝜎𝐸 ⟨𝐸⟩⁄ versus Δ𝑡.

Part d
Modify your molecular dynamics code to perform a series of steps that will allow you to compute

the self-diffusion coefficient as a function of temperature and chain length:

• First perform equilibration for NStepsEquil1 integration steps using velocity rescaling

to the target temperature 𝑇 every RescaleFreq steps.

• Perform a second equilibration for NStepsEquil2 integration steps using velocity

rescaling every RescaleFreq steps. At the end of this period, the average total energy

for the NStepsEquil2 steps should be computed. The velocities should then be

rescaled such that the current kinetic energy plus the current (instantaneous, not

average) potential energy equals the target average total that you computed.

• Copy the positions of the particles into a reference array for computing the mean-squared

displacement, e.g., Pos0 = Pos.copy().

• Perform a production run for NStepsProd integration steps without velocity rescaling,

that is, for constant NVE dynamics. During the run, periodically record the time and the

mean-squared displacement of the atoms from their initial positions.

Use the settings

• NStepsEquil1 = 10,000

• NStepsEquil2 = 10,000

• NStepsProd = 100,000

Perform runs for 𝑀 = 2, 4, 6, 8, 12, 16. Create a third graph that gives the mean-squared

displacement for each as a function of time for 𝑡tot = 100. Estimate the diffusion coefficient

from the slopes and plot these on a fourth graph as a function of chain length. Does the diffusion

coefficient appear to obey any obvious scaling law, 𝐷~𝑀𝜈?

You may want to benchmark your results with those of Reis et al.

Part e
Make a short movie of a production run for the case 𝑀 = 16. Color one chain differently so that

you can visually follow its evolution in time (HINT: give this chain unique atom names using the

AtomNames option of atomwrite.py). Print out a screenshot of your movie.

Part f – ADVANCED TRACK
For 𝑀 = 4, 8, 16, compute the self-diffusion coefficient for 𝑇 = 1.0, 1.5, 2.0, 2.5, 3.0. Make a

fifth plot of ln(𝐷 𝑇⁄) as a function of 1/𝑇 with each 𝑀 as a separate series. If the diffusion

constant follows an Arhennius relationship, to first order the slope of this line should be linear:

𝐷~𝑇 exp [
−𝐸𝑎

𝑘𝐵𝑇
]

How does the activation energy compare for the different chain lengths? Note: you may want to

automate the computation of the self-diffusion coefficient in your code. NumPy comes with a

function for performing least-squares regression:

Slope, Intercept = np.polyfit(xvals, yvals, 1)

Part g – ADVANCED TRACK
Are system size effects significant? Consider the case 𝑀 = 16. How does the computed

diffusivity vary as the total number of atoms (and hence polymers) increases? You may want to

make a plot of the calculated diffusivity as a function of 1/𝐿 where 𝐿 is the box dimension, such

that extrapolation to 1/𝐿 = 0 estimates the infinite system size limit.

What to turn in
For the assignment, submit a short, typed summary of your results, clearly indicating the problem
components. In addition, print a copy of your Python code for reference and attach it to the back
of these.

Template overview
The following is a list of functions already implemented for you in the ex3.py template:

Help on module ex3:

NAME

 ex3 - #Exercise 3 template for CHE210D

FILE

 ex3.py

FUNCTIONS

 LineSearch(Pos, Dir, dx, EFracTol)

 Performs a line search along direction Dir.

 Input:

 Pos: starting positions, (N,3) array

 Dir: (N,3) array of gradient direction

 dx: initial step amount

 EFracTol: fractional energy tolerance

 Output:

 PEnergy: value of potential energy at minimum along Dir

 Pos: minimum energy (N,3) position array along Dir

 ConjugateGradient(Pos, dx, EFracTolLS, EFracTolCG)

 Performs a conjugate gradient search.

 Input:

 Pos: starting positions, (N,3) array

 dx: initial step amount

 EFracTolLS: fractional energy tolerance for line search

 EFracTolCG: fractional energy tolerance for conjugate gradient

 Output:

 PEnergy: value of potential energy at minimum

 Pos: minimum energy (N,3) position array

 InitAccel(Pos)

 Returns the initial acceleration array.

 Input:

 Pos: (N,3) array of atomic positions

 Output:

 Accel: (N,3) array of acceleration vectors

 InitPositions(N, L)

 Returns an array of initial positions of each atom,

 placed on a cubic lattice for convenience.

 Input:

 N: number of atoms

 L: box length

 Output:

 Pos: (N,3) array of positions

 InitVelocities(N, T)

 Returns an initial random velocity set.

 Input:

 N: number of atoms

 T: target temperature

 Output:

 Vel: (N,3) array of atomic velocities

 RescaleVelocities(Vel, T)

 Rescales velocities in the system to the target temperature.

 Input:

 Vel: (N,3) array of atomic velocities

 T: target temperature

 Output:

 Vel: same as above

 InstTemp(Vel)

 Returns the instantaneous temperature.

 Input:

 Vel: (N,3) array of atomic velocities

 Output:

 Tinst: float

