
Department of Chemical Engineering ChE 210D 
University of California, Santa Barbara Fall 2019 

Exercise 3 

Due: Tuesday, 10/29/19 

Objective: To learn how to write & compile Fortran libraries for Python, to perform a basic 
molecular dynamics simulation, and to compute thermodynamic and kinetic 
property averages from it. 

 

A simple model of a linear polymer is the Lennard-Jones chain.  An atomic system of such chains 

interacts according to the following (dimensionless) potential energy function: 
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Here, the 𝑖 and 𝑗 are indices over atoms in the system.  Make the following definitions: 

𝑀 – number of monomers (LJ atoms) per polymer 

𝑁poly – number of polymers in the simulation cell 

𝑁 = 𝑀𝑁poly – number of total atoms in the system 

Notice that the potential energy function involves two parameters: 𝑘 is the force constant for 

harmonic bonds between adjacent atoms in the same polymer and 𝑟0 is the equilibrium bond 

distance.  We will take 𝑘 = 3000 and 𝑟0 = 1, which are standard in the literature. 

Lennard-Jones chains have been studied extensively as models of polyatomic molecules and very 

short polymers.  These systems have suggested scaling laws for various properties as a function 

of polymer length.  In particular, Reis and coworkers [Reis et al., Fluid Phase Equilibria 221, 25 

(2004)] have evaluated the self-diffusion coefficient for systems of 𝑀 = 2,4,8,16.  

In this assignment, you will develop a molecular dynamics simulation of Lennard-Jones chains 

and use this to compute the self-diffusion coefficient for several polymer lengths and 

temperatures.  To assist you, some of the code has already been written, but you are free also to 

develop your code from scratch should you choose to do so.  The template files can be found on 

the course website as ex3lib.f90 and ex3.py.   



Part a 
Edit the ex3lib.f90 file to add a function CalcEnergyForces that computes the total potential 

energy and the force on each atom for a given configuration.  Then add a second function 

CalcEnergy (copying and editing the code for the first) that only computes the total potential 

energy.  The reason you will add two functions is that you will energy-minimize your initial 

configurations before performing molecular dynamics and the line search does not require the 

forces, which we want to avoid computing for efficiency reasons. 

In the pairwise interaction loop, you can determine whether or not two atoms i and j are bound 

by the following kind of code: 

do i = 0, NAtom - 1 

    do j = i + 1, NAtom - 1 

        if (j == i + 1 .and. mod(j, M) > 0) then 

            !this is a bonded interaction; 

            !use the harmonic bond potential here 

        else 

            !this is a nonbonded interaction; 

            !use the Lennard-Jones potential here 

        endif 

    enddo 

enddo 

The code mod(j, M) will return 0 every time the i and j=i+1 particle are in different molecules.  

This is because when the modulo of j with M is zero, j is a multiple of M and it therefore is the 

first atom of a polymer while i is the last of the previous. 

Your simulation will take place under periodic boundary conditions in a cubic box of side length 

𝐿.  Therefore, you will need to compute the minimum image distance.   In Fortran,  

rij = rij - L * dnint(rij / L) 

where rij is the vector (a length-3 array) of position differences. 

For the nonbonded interactions, you should cut and shift the Lennard-Jones potential at a 

distance of 𝑟𝑐.  Do not apply a tail correction. 

Keep in mind several efficiency considerations.  You do not want to compute the square root of 

the distance unless you have to (e.g., the Lennard-Jones potential doesn’t require it, but the 

harmonic potential does).  Before the pairwise loop, you should precompute any constants, such 

as the Lennard-Jones shift value.  

Compile your Fortran file into a Python library using f2py.  You may want to compile it first using 

gfortran to detect any errors / bugs.  This is covered in the handout on compiling routines using 

f2py. 



Part b 
Edit the Python file ex2.py to develop a molecular dynamics code.  Several functions have been 

written for you already and are described in the docstrings and comments. 

Your code for a molecular dynamics run should do the following: 

• Initially place atoms on a cubic lattice.  You can use the existing function 

InitPositions in the template file. 

• Energy-minimize the initial configuration using the conjugate-gradient method.  This is for 

numerical stability when starting the MD integration . 

• Use the velocity Verlet integrator to perform a molecular dynamics run.  The atomic 

velocities should be rescaled every RescaleFreq integration steps to achieve a target 

temperature 𝑇.  At any step number i, you can test whether or not you should rescale the 

velocities using the modulo operator (e.g., i % RescaleFreq == 0). 

Use the following settings: 

• 𝑁 = 240 

• 𝜌 = 𝑁 𝑉⁄ = 0.8 so that 𝐿 = (𝑁 𝜌⁄ )1 3⁄  

• Δ𝑡 = 0.001 

• 𝑇 = 1.0 

• 𝑟𝑐 = 2.5 

Perform simulations for 𝑀 = 2, 4, 6, 8, 12, 16, where 𝑁poly = 𝑁 𝑀⁄ = 240 𝑀⁄ .  On a single graph, 

add a series for each that gives the potential energy as a function of time for 𝑡 = 0 to 𝑡 = 2. 

(2,000 integration steps).   

Part c 
Consider the 𝑀 = 8 simulation run.  After 𝑡 = 2, turn off velocity rescaling and monitor the total 

energy, which should be constant with time.  Compute the fractional fluctuation in total energy 

𝜎𝐸 ⟨𝐸⟩⁄  as a function of the time step Δ𝑡 = 0.0001, 0.0002, 0.0004, 0.0008, 0.0016, 0.0032,

0.0064, 0.0128.  Place your results on a second graph that is a log-log plot of 𝜎𝐸 ⟨𝐸⟩⁄  versus Δ𝑡. 



Part d 
Modify your molecular dynamics code to perform a series of steps that will allow you to compute 

the self-diffusion coefficient as a function of temperature and chain length: 

• First perform equilibration for NStepsEquil1 integration steps using velocity rescaling 

to the target temperature 𝑇 every RescaleFreq steps. 

• Perform a second equilibration for NStepsEquil2 integration steps using velocity 

rescaling every RescaleFreq steps.  At the end of this period, the average total energy 

for the NStepsEquil2 steps should be computed.  The velocities should then be 

rescaled such that the current kinetic energy plus the current (instantaneous, not 

average) potential energy equals the target average total that you computed. 

• Copy the positions of the particles into a reference array for computing the mean-squared 

displacement, e.g., Pos0 = Pos.copy(). 

• Perform a production run for NStepsProd integration steps without velocity rescaling, 

that is, for constant NVE dynamics.  During the run, periodically record the time and the 

mean-squared displacement of the atoms from their initial positions. 

Use the settings 

• NStepsEquil1 = 10,000 

• NStepsEquil2 = 10,000 

• NStepsProd = 100,000 

Perform runs for 𝑀 = 2, 4, 6, 8, 12, 16.  Create a third graph that gives the mean-squared 

displacement for each as a function of time for 𝑡tot = 100.  Estimate the diffusion coefficient 

from the slopes and plot these on a fourth graph as a function of chain length.  Does the diffusion 

coefficient appear to obey any obvious scaling law, 𝐷~𝑀𝜈? 

You may want to benchmark your results with those of Reis et al. 

Part e  
Make a short movie of a production run for the case 𝑀 = 16.  Color one chain differently so that 

you can visually follow its evolution in time (HINT: give this chain unique atom names using the 

AtomNames option of atomwrite.py).  Print out a screenshot of your movie.     



Part f – ADVANCED TRACK 
For 𝑀 = 4, 8, 16, compute the self-diffusion coefficient for 𝑇 = 1.0, 1.5, 2.0, 2.5, 3.0.  Make a 

fifth plot of ln(𝐷 𝑇⁄ ) as a function of 1/𝑇 with each 𝑀 as a separate series.  If the diffusion 

constant follows an Arhennius relationship, to first order the slope of this line should be linear: 

𝐷~𝑇 exp [
−𝐸𝑎

𝑘𝐵𝑇
] 

How does the activation energy compare for the different chain lengths?  Note: you may want to 

automate the computation of the self-diffusion coefficient in your code. NumPy comes with a 

function for performing least-squares regression:  

Slope, Intercept = np.polyfit(xvals, yvals, 1) 

Part g – ADVANCED TRACK 
Are system size effects significant?  Consider the case 𝑀 = 16.  How does the computed 

diffusivity vary as the total number of atoms (and hence polymers) increases?  You may want to 

make a plot of the calculated diffusivity as a function of 1/𝐿 where 𝐿 is the box dimension, such 

that extrapolation to 1/𝐿 = 0 estimates the infinite system size limit. 

What to turn in 
For the assignment, submit a short, typed summary of your results, clearly indicating the problem 
components.  In addition, print a copy of your Python code for reference and attach it to the back 
of these. 

Template overview 
The following is a list of functions already implemented for you in the ex3.py template: 

Help on module ex3: 

 

NAME 

    ex3 - #Exercise 3 template for CHE210D 

 

FILE 

    ex3.py 

 

FUNCTIONS 

    LineSearch(Pos, Dir, dx, EFracTol) 

        Performs a line search along direction Dir. 

        Input: 

            Pos: starting positions, (N,3) array 

            Dir: (N,3) array of gradient direction 

            dx: initial step amount 

            EFracTol: fractional energy tolerance 



        Output: 

            PEnergy: value of potential energy at minimum along Dir 

            Pos: minimum energy (N,3) position array along Dir     

 

    ConjugateGradient(Pos, dx, EFracTolLS, EFracTolCG) 

        Performs a conjugate gradient search. 

        Input: 

            Pos: starting positions, (N,3) array 

            dx: initial step amount 

            EFracTolLS: fractional energy tolerance for line search 

            EFracTolCG: fractional energy tolerance for conjugate gradient 

        Output: 

            PEnergy: value of potential energy at minimum 

            Pos: minimum energy (N,3) position array 

     

    InitAccel(Pos) 

        Returns the initial acceleration array. 

        Input: 

            Pos: (N,3) array of atomic positions 

        Output: 

            Accel: (N,3) array of acceleration vectors 

     

    InitPositions(N, L) 

        Returns an array of initial positions of each atom, 

        placed on a cubic lattice for convenience. 

        Input: 

            N: number of atoms 

            L: box length 

        Output: 

            Pos: (N,3) array of positions 

     

    InitVelocities(N, T) 

        Returns an initial random velocity set. 

        Input: 

            N: number of atoms 

            T: target temperature 

        Output: 

            Vel: (N,3) array of atomic velocities 

     

    RescaleVelocities(Vel, T) 

        Rescales velocities in the system to the target temperature. 

        Input: 

            Vel: (N,3) array of atomic velocities 

            T: target temperature 

        Output: 

            Vel: same as above 

 

    InstTemp(Vel) 

        Returns the instantaneous temperature. 

        Input: 

            Vel: (N,3) array of atomic velocities 

        Output: 

            Tinst: float 


