Writing fast routines for Python

Table of contents

TabIE Of CONTENTS ...t ettt e et s bt e e et e e st e s saneesbeeesanneeeas 1
OVEIVIBW ..ttt e e e et e e st e s et e e e e e e e se s b ba et et e e e s e sasnrbe et e e esssennnnnnes 2
INSTAIIATION .ttt ettt e e b e e et e e e s be e e s bt e e sab e e e sabeesenneesnreeeas 4
Using Numba to accelerate Python calculations with minimal effort..........cccccccoeiiiiiiiie i, 4
FOPtran ProgramMiNG e e ettt aabe e ae e ss s s ssbsbsssssssss s bssssssssssasssnsssnsnsnnnnns 7
FAN oY - [I oF: [IR (UL L PSSR 12
Maximizing computational efficiency in Fortran codeccccvvviiiiieiiiiie i 16
Multiple functions in each FOrtran fileooeiviiiiiiii e 18
Compiling aNd dEDUEBEINGeeviiiiiie et e e e e e e sab e e e e ssaaeeeeeesseeeeenns 19
Preparing CoAe fOr f2PY e e e e e e e s e e e e nanaes 20
(UL oY YT g =30 7 Y PP SSR 21
HEID WIth f2DY i e e e e e s e e e s bte e e e s nraeeeesnaeeeeenanees 24
Importing and using f2py-compiled modules in Pythonccooviiiiiiiiieicce e 24
Learning More abOUL FOMTranuveeiii ittt rrrree e e e e e s e b re e e e e e e sesnanraaeeeeeens 26

© 2025 M. Scott Shell 1/26 last modified 9/26/2025

Overview

Python, unfortunately, does not always come pre-equipped with the speed necessary to perform
intense numerical computations in user-defined routines. Ultimately, this is due to Python’s
flexibility as a programming language. Very efficient programs are often inflexible: every variable
is typed as a specific numeric format and all arrays have exactly specified dimensions. Such
inflexibility enables programs to assign spots in memory to each variable that can be accessed
efficiently, and it eliminates the need to check the type of each variable before performing an
operation on it.

We will discuss three ways that we can write computationally efficient Python code. The first is
to make good use of numpy and scipy routines whenever we can, rather than writing our own
code. The functions and classes in these modules reference fast, compiled code behind the scene
that is highly optimized and takes advantage of modern hardware architectures. For example,
we could compute pairwise distances between a particle i and all other particles j using the
following Python code:

def compute pair distancesl (i, Pos):
N, Dim = Pos.shape
dist = np.zeros((N,), dtype=float)
for j in range(N):
if i==j: continue
dist[j] = np.sqgrt(np.sum((Pos[i] - Pos[j])**2))
return dist

Or, we could use numpy routines without an explicit loop:

def compute pair distances2(i, Pos):
return np.sqrt(np.sum((Pos[:,:] - Pos[i,:])**2, axis=1l))

For a 1000-particle system, the second function is over 150x faster than the first.

Still, it isn’t always possible to make use of built-in numpy routines. Fortunately, we can combine
Python code with compiled code and still maintain the flexibility and coding ease that Python
provides. We can do this because typically our simulations are dominated by a few bottleneck
steps, while the remainder of the code we write is insignificant in terms of computational
demands. Things like outputting text to a display, writing data to files, setting up the simulation,
keeping track of energy and other averages, and even modifying the simulation while its running
(e.g., changing the box size or adding/deleting a particle) are actually not that computationally
intensive. On the other hand, computing the total energies and forces on each atom in a pairwise
loop is quite expensive. This is an order N? operation, where the number of atoms N typically
varies from 100 to 10000.

© 2025 M. Scott Shell 2/26 last modified 9/26/2025

The second approach to fast code is to use a just-in-time Python compiler for these kind of
bottleneck routines. A number of such packages exist for this purpose for Python, including
Numba and Cython. The former is far much easier to use, albeit less amenable to detailed
customization, and so we will only discuss it here. Numba essentially takes Python functions, and
translates them into much faster machine code that is compiled on the fly.

The third and typically most efficient solution is to write the expensive steps in a fast language
like Fortran and to keep everything else in Python. Fortunately, this is a very easy task. Numpy
provides simple routines for compiling fast code written in Fortran into modules that can be
imported into Python and used directly. Functions in that module can be called as if they were
written in Python, but with the performance of compiled code.

In compiling Fortran code for Python, we will use a specific tool called f2py that completely
automates the compilation of Fortran code into Python modules. The reason we will use this
instead of other approaches is that: (1) f2py is relatively stable, very simple to use, and comes
built-in with NumPy; (2) Fortran, albeit a somewhat archaic and inflexible language, is simple and
actually one of the fastest compiled languages; and (3) a large amount of legacy code in the
scientific community is written in Fortran and thus knowing some aspects of it helps understand
and incorporate this code into your own.

The following benchmarks give rough speed comparisons for Exercise 2 in the course, as a
function of number of atoms (lower values are better). Here, “broadcast” means the use of
numpy functions to compute distances in the j-loop. Courtesy of Jacob Monroe:

102 4
lol 4
loD 4
G
2 1071 3
E native
native_broadcast
1072 3 — fortran
numba
—— numba_broadcast
3 —— numba_broadcast_parallel
10 —— numba_parallel
cython
_a —— cython_broadcast
10 : | |
10° 10° 10*

Number of points

© 2025 M. Scott Shell 3/26 last modified 9/26/2025

Installation

Everything you will need is open source or freely licensed. Moreover, all of the utilities discussed
below are cross-platform. If you have installed the Anaconda Distribution, then you should have
most of the necessary files available, including Numba. To use the Fortran routines, you will need
to add a Fortran compiler. See the course syllabus for details.

Using Numba to accelerate Python calculations with minimal effort

Numba is a just-in-time compiler for Python, which means that it can translate Python into
machine code on-the-fly for designated functions, which then run significantly faster. The
compilation step adds some overhead the first time that a function is called, but this only happens
once during the course of the program. This means that expensive routines called many times,
like the calculation of pairwise energies and forces, can be dramatically accelerated.

Let’s consider the Lennard-Jones system. We could write the following (unoptimized) Python
code to compute the energy and forces:

def calcenergyforces(Pos, L, rc, Force):
NAtom, Dim = Pos.shape
Shift = -4. * (rc**(-12) - rc**(-6))
rc2 = rc * rc
iL = 1./L
PEnergy = 0.
Force.fill (0.)
for i in range (NAtom) :
Posi = Pos]|[i, :]
for j in range(0,i):
rij Pos[j,:] - Posi
rij rij - L * np.rint(rij * iL)
d2 = np.sum(rij**2)
if d2 > rc2:

continue
id2 = d2**(-1) #inverse squared distance
idé = id2 * id2 * id2 #inverse sixth distance
idl2 = idé * idé6 #inverse twelvth distance

PEnergy += 4. * (idl2 - idé6) + Shift
Fij = rij * ((-48. * idl2 + 24. * idé6) * id2)
Force[i,:] += Fij
Force[]j,:] -= Fij
return PEnergy, Force

Let’s consider a test where we use this loop to run 100,000 MD steps with a 108-particle system;
the timing results are machine-specific, but it will illustrate the speedups. Running as pure
Python, the test requires 1.06 hours — not very fast at all.

Now let’s use Numba to compile this routine. We first import using

é from numba import njit

© 2025 M. Scott Shell 4/26 last modified 9/26/2025

and then we add a decorator to the top of our function:

@njit
def calcenergyforces(Pos, L, rc, Force):
NAtom, Dim = Pos.shape
Shift = -4. * (rc**(-12) - rc**(-6))
rc2 = rc * rc
iL = 1./L
PEnergy = 0.
Force.fill (0.)
for i in range (NAtom) :
Posi = Pos]|[i, :]
for j in range(0,i):

rij = Pos[]j,:] - Posi
rij = rij - L * np.rint(rij * ilL)
d2 = np.sum(rij**2)
if d2 > rc2:
continue
id2 = d2** (-1) #inverse squared distance
idé6 = id2 * id2 * id2 #inverse sixth distance
idl2 = id6é * idé6 #inverse twelvth distance

PEnergy += 4. * (idl2 - idé6) + Shift
Fij = rij * ((-48. * idl2 + 24. * idé6) * id2)
Force[i,:] += Fij
Force[]j,:] -= Fij
return PEnergy, Force

A decorator is an instruction to Python to process a function in a special way. Here, nj it signals
to Numba to use the “no python” mode of its just-in-time compiler; “no python” means that
Numba will compile to the fastest code possible by omitting bindings to the Python interpreter.

Running our test, we find that there is a small delay at the start of the program, when the routine
is first compiled. But then our 100,000 MD steps require 129 seconds, a 29x speedup relative to
pure Python!

We can make Numba-compiled routines even faster if we make use of Numpy array functions to
accomplish part of the calculations. Notice that we calculate the squared distance between all
i,j pairs. Let’s rewrite the code to use Numpy functions to do this.

@njit
def calcenergyforces(Pos, L, rc, Force):
NAtom, Dim = Pos.shape
Shift = -4. * (rc**(-12) - rc**(-6))
rc2 = rc * rc
iL. = 1./L
PEnergy = 0.
Force.fill (0.)
for i in range (NAtom) :
#here, testing for i < j
#distance vectors
rijarr = Pos[:i,:] - Pos|[i,:]
#minimum image

© 2025 M. Scott Shell 5/26 last modified 9/26/2025

rijarr = rijarr - L * np.rint(rijarr * ilL)
#squared distance
d2arr = np.sum(rijarr*rijarr, axis=1)
for j in range(0,i):
d2 = d2arr[j]

if d2 > rc2:

continue
rij = rijarr[j]
id2 = d2**(-1) #inverse squared distance
idé = id2 * id2 * id2 #inverse sixth distance
idl2 = id6 * id6 #inverse twelvth distance

PEnergy += 4. * (idl2 - idé) + Shift
Fij = rij * ((-48. * idl2 + 24. * id6) * id2)
Force[i,:] += Fij
Force[j,:] -= Fij
return PEnergy, Force

Notice that we use Numpy array operations to compute all of the pair distance vectors from a
particle i to all j < i, then the minimum image distances, and finally the squared distances.

Now our test code requires 53.9 seconds, a 70x speedup relative to pure Python and a 2.4x
speedup relative to the first Numba-compiled routine. In general, we should try to use Numpy
array operations within Numba-compiled code whenever we can, since these are highly
optimized and will result in the fastest calculations.

For comparison, if we had written the calcenergyforces routine in Fortran and compiled it
for Python using f2py — as we discuss below — the same test would take only 16.9 seconds, a 224x
speedup from pure Python and faster than the Numba-compiled routines. However, this requires
more effort, notably programming in a language other than Python and pre-compiling a module.

There is one more way to accelerate Numba-optimized routines, and that involves parallelizing
them so that Numba can take advantage of modern CPU hardware that can perform multiple
calculations simultaneously. This will increase the load on our computational resources, but it
can also produce substantial increases in speed. We modify our code as follows:

from numba import njit, prange

@njit (parallel=True)
def calcenergyforces(Pos, L, rc, Force):
NAtom, Dim = Pos.shape
Shift = -4. * (rc**(-12) - rc**(-6))
rc2 = rc * rc
iL. = 1./L
PEnergy = 0.
Force.fill (0.)
for i in prange (NAtom) :
#here, testing for i < j
#distance vectors
rijarr = Pos[:i,:] - Pos[i,:]
#minimum image

© 2025 M. Scott Shell 6/26 last modified 9/26/2025

rijarr = rijarr - L * np.rint(rijarr * iL)
#squared distance
d2arr = np.sum(rijarr*rijarr, axis=1)
for j in range(0,i):
d2 = d2arr[j]

if d2 > rc2:

continue
rij = rijarr[j]
id2 = d2**(-1) #inverse squared distance
idé = id2 * id2 * id2 #inverse sixth distance
idl2 = id6 * id6 #inverse twelvth distance

PEnergy += 4. * (idl2 - idé) + Shift
Fij = rij * ((-48. * idl2 + 24. * id6) * id2)
Force[i,:] += Fij
Force[j,:] -= Fij
return PEnergy, Force

The function prange acts like range, but allows Numba to take that particular loop and distribute
it across multiple threads simultaneously. Note that this only works if the loop does not have
cross iteration dependencies, e.g., each pass through the loop is independent of any other. Here,
we parallelize the outer loop over particle i.

Now, our test case requires just 14.4 seconds — much faster! This even beats the Fortran routine,
although the comparison isn’t fair because the Fortran version below hasn’t been parallelized.
It’s also important to note that the parallel Numba version uses around 90% of our CPU when it
is running, versus 10-20% for the non-parallel one.

Fortran programming

Fortran offers another way to build very fast Python modules and functions, although it requires
knowledge of the Fortran programming language. Before we begin compiling Fortran routines
for Python, we need some background on programming in Fortran. Fortunately, we only need
to know the basics of the Fortran language since we will only be writing numerical functions and
not coding entire Fortran projects.

We will be using the Fortran 90 standard. There are older versions of Fortran, notably Fortran
77, that are much more difficult to read and use. Fortran 90 files all end in the extension .f90 and
we can put multiple functions in a single .f90 file—these functions will eventually each appear as
separate member functions of the Python module we make from this Fortran file.

Fortran 90 code is actually fairly straightforward to develop, but it is important to keep in mind
some main differences from Python:

e Fortran is not case-sensitive. Thatis, the names atom, Atom, and ATOM all designate
the same variable.

© 2025 M. Scott Shell 7/26 last modified 9/26/2025

ll'll

e The comment character is an explanation point, “1”, instead of the pound sign in Python.

e Spacing is unimportant in Fortran. Instead of using spacing to show the commands
included with a subroutine or loop, Fortran uses beginning and closing statements. For
example, subroutines begin with subroutine MyFunction (...) and end with end

subroutine.

e Fortran does make a distinction between functions that return single variable values and
subroutines that do not return anything but that can modify the contents of variables sent
to it. However, in writing code to be compiled for Python, we will always write
subroutines and therefore will not need to worry about functions. We will often use the
nomenclature "function" interchangeably with subroutine.

e Fortran does not have name binding. Instead, if you change the value of a variable passed
to a subroutine via the assignment operation (=), the value of that variable is changed for
good. Fortunately, Fortran lets us declare whether or not variables can be modified in
functions, and a compile error will be thrown if we violate our own rules.

e Everyvariable should be typed. That means that, at the beginning of a function, we should
specify the type and size of every variable passed to it, passed from it, and created during
it. This is very important to the speed of routines. More on this later.

e Fortran has no list, dictionary, or tuple capabilities. It only has arrays. When we iterate
over an array using a loop, we must always create an integer variable that is the loop
index. Moreover, Fortran loops are inclusive of the upper bound.

e Fortran uses parenthesis () rather than brackets [] to access array elements.

e Fortran array indices start at 1 by default, rather than at 0 as in Python. This can be very
confusing, and we will always explicitly override this behavior so that arrays start at 0.

Let’s start with a specific example to get us going. We will write a function that takes in a (N,3)
array of N atom positions, computes the centroid (the average position), and makes this point
the origin by centering the original array. In Python / NumPy, we could accomplish this task
using a single line:

E Pos = Pos — Pos.mean(axis=0)

An equivalent Fortran subroutine would look the following:

E subroutine CenterPos (Pos, Dim, NAtom)
i implicit none
integer, intent(in) :: Dim, NAtom

© 2025 M. Scott Shell 8/26 last modified 9/26/2025

real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos
real (8) , dimension(0:Dim-1) :: PosAvg
integer :: i, j
PosAvg = sum(Pos, 1) / dble (NAtom)
do i = 0, NAtom - 1

do j =0, Dim - 1

Pos(i,j) = Pos(i,]j) - PosAvg(j)

end do

end do
end subroutine

In the above example, we defined a subroutine called CenterPos that takes three arguments:
the array Pos, the dimensionality Dim, and the number of atoms NAtom. The subroutine is
entirely contained within the initial subroutine and end subroutine statements.

Immediately after the declaration statement, we use the phrase implicit none. Itisagood
habit always to include this statement immediately after the declaration. It tells the Fortran
compiler to raise an error if we do not define a variable that we use. Defining variables is critical
to the speed of our code.

Next we have a series of statements that define all variables, including those that are sent to the
function. These statements have the following forms. For arguments to our function that are
single values, we use:

| type TYPE, intent(INTENT) :: NAME

For array arguments, we use:

é type TYPE, intent (INTENT), dimension (DIMENSIONS) :: NAME

Finally, for other variables that we use within the function, but that are not arguments/inputs or
outputs, we use:

| type TYPE :: NAME

or, for arrays,

é type TYPE, dimension (DIMENSIONS) :: NAME

Here, TYPE is a specifier that tells the function the numeric format of a variable. The Fortran
equivalents of Python types are:

Python / NumPy Fortran
float real (8) (also called double)
int integer
bool logical

© 2025 M. Scott Shell 9/26 last modified 9/26/2025

For arguments, we use the INTENT option to tell Python what we are going to do with a variable.
There are three such options,

intent meaning

in The variable is an input to the subroutine only. Its value
must not be changed during the course of the subroutine.

out The variable is an output from the subroutine only. Its

input value is irrelevant. We must assign this variable a
value before exiting the subroutine.

inout The subroutine both uses and modifies the data in the
variable. Thus, the initial value is sent and we ultimately
make modifications base on it.

For array arguments, we also specify the DIMENSIONS of the arrays. For multiple dimensions,

we use comma-separated lists. The colon “:” character indicates the range of the dimension.
Unlike Python, however, the upper bound is inclusive. The statement

é real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos

says that the first axis of Pos varies from 0 to and including NAtom-1, and the second axis from
0 to and including Dim-1. We could have also written this statement as

é real (8), intent(inout), dimension (NAtom, Dim) :: Pos

In which case the lower bound of each dimension would have been 1 rather than 0. Instead, we
explicitly override this behavior to keep Fortran array indexing the same as that in Python, for
clarity in our programming.

Notice that the dimensions are variables that we must declare in and pass to the subroutine when
it is called. This, again, is a step that helps achieve faster code. Eventually f2py will automatically
pass these dimensions when the Fortran code is called as a Python module, so that these
dimensional arguments are hidden. For that reason, one should always put any arguments that
specify dimensions at the end of the argument list. Notice that all of the dimension variables
are at the end of our subroutine declaration:

E subroutine CenterPos (Pos, Dim, NAtom)

Notice also that we can list multiple variable names that have the same type, dimensions (if
array), and intent (if arguments) on the same line in place of NAME.

In addition to the subroutine arguments, we define three additional variables that are used only
within our function, created upon entry and destroyed upon exit:

© 2025 M. Scott Shell 10/26 last modified 9/26/2025

real (8), dimension(0:Dim-1) :: PosAvg
integer :: i, j

PosAvg is a length-three array that we will use to hold the centroid position we compute. The
integers 1 and j are the indices we will use when writing loops.

The first line of our program computes the centroid (average position) of our array:

é PosAvg = sum(Pos, 1) / dble (NAtom)

The Fortran function sum takes an array argument and sums it, optionally over a specified
dimension. Here, we indicate a summation over the first axis, that corresponding to the particle
number. In other words, Fortran sums all of the x, y, and z values separately and returns a length-
three array. It is very important to notice here that the first axis of an array is indicated with 1
rather than 0, as would be the case in Python. This is because Fortran ordering naturally begins
at 1.

The dble function above takes the integer NAt om and converts it to a double-precision number,
e.g., of type real (8) . Itis a good idea to explicitly convert types using such functions in
Fortran. Not doing so will force the compiler to insert conversions that many not be what we
desired, and could result in extra unanticipated steps that might slow performance. In addition
todble, int (X) will convert any argument X to an integer type.

The lines that follow modify the Pos array to subtract the centroid positions from it:

do i = 0, NAtom - 1
do j =0, Dim - 1
Pos(i,j) = Pos(i,j) - PosAvg(])
end do
end do

Notice that we have two loops that iterate over the array indices. Each loop has the following
form:

do VAR = START, STOP
COMMANDS
end do

In Fortran, such do loops involve integers and are inclusive of both the starting and stopping
values. Indentation here is optional and just for ease of reading, because it is the end do
command that signals the end of a loop.

Like Python, Fortran allows array operations. What this means internally is that Fortran will write
out the implied do loop over array elements if we perform array calculations. We could therefore
simplify the above code by removing the inner loop:

© 2025 M. Scott Shell 11/26 last modified 9/26/2025

subroutine CenterPos (Pos, Dim, NAtom)
implicit none
integer, intent(in) :: Dim, NAtom
real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos
real (8) , dimension(0:Dim-1) :: PosAvg
integer :: i
PosAvg = sum(Pos, 1) / dble (NAtom)
do i = 0, NAtom - 1

Pos(i,:) = Pos(i,:) - PosAvg(:)

end do

end subroutine

Here, we use Fortran slicing notation to indicate that we want to apply the mathematical
operation to each array element.

Slicing of Fortran arrays is very similar to that of NumPy, and uses the start:stop:step
notation, where each of these can be optional. One small difference is that the upper bounds of
arrays are inclusive in Fortran, whereas they are exclusive in Python. In other words,
PosAvg[:2] takes elements O through 1 in Python and PosAvg(:2) takes elements O
through 2 in Fortran.

There is one other, major difference between slicing arrays in Fortran and NumPy: the former
does not permit broadcasting. That means that every array in a mathematical operation designed
to operate elementwise must be the exact same dimensions and size. In NumPy, on the other
hand, broadcasting can be used to automatically up-convert arrays to higher dimensionalities
when performing such operations.

A Fortran case study

To illustrate the Fortran language, we will consider the following subroutine that computes the
total potential energy and force on each atom for a system of Lennard-Jones particles. Here,
total potential energy is given by a sum of pairwise interactions:

U= z u(rij)

i<j

u(riy) = 4e [(%)_12 - (%)_6]

The force in the x-direction on a particular atom is given by:

ou
fir = "%
L

== aixlz u(ryy)

JE!

© 2025 M. Scott Shell 12/26 last modified 9/26/2025

or;;
= 99: Ugz (Tu)

];tl

But since 75 = (x; — xj)z + (v — J’j)z +(z - Zj)zr

_ Xi—x]' d
Fl’x_ z< rij >6

JE

Thus, generalizing to all three coordinates and using vector notation for r;; = r; — rj:

_ Tij
Fi = Z <rl]) ory; u(rl])

DIGIGIEIORTON
PRICIELCREICN

Jj#i
These equations form the basis of our pairwise interaction loop. We notice that we will need to

compute vectors, like r;;, as well as distances, like r;;. In addition, a large portion of our
computational overhead will involve raising quantities to powers.

We must also consider the effects of periodic boundary conditions when computing r;; and r;;.
Each particle should see only those images of other particles that are closest to it. We can
accomplish this task by finding the minimum image distance between each pair of particles rl]
For each component, we use the rounding function nint, which returns the nearest integer
value:

ri(} = rl'j —L nlnt(rl]/L)

Here L is the length of the simulation box, and may be a vector for non-cubic boxes. Notice that
this equation implies a separate operation for each component x, y, and z.

Finally, we have to treat the truncation of our potential. We will introduce a cutoff at a pairwise
distance 1., beyond which the value of the potential will be zero; typically . = 2.50 or greater.
We will also shift our entire potential up in energy by the value at 7. so that the potential energy
between any pair of particles continuously approaches zero at .. Thus we have:

B L I I R (O I O N R

0 rl'j > e

© 2025 M. Scott Shell 13/26 last modified 9/26/2025

In our simulation, we will work with dimensionless units such that values for positions/distances
and energies are given in units of ¢ and € respectively. Thus, our pairwise potential function
actually looks like:

u(ry) = {4[rij‘12 — rl-j‘6]0— 4,72 —=1"%] n;<r,

rij > 1

We are now ready to write our subroutine. A naive implementation unoptimized for speed might
look like:

ljlibfortran. £90

subroutine EnergyForces (Pos, L, rc, PEnergy, Forces, Dim, NAtom)
implicit none

integer, intent(in) :: Dim, NAtom

real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos

real (8), intent(in) :: L, rc

real (8), intent(out) :: PEnergy

real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces
real (8), dimension(Dim) :: rij, Fij

real(8) :: d, Shift

integer :: i, j

PEnergy = 0.
Forces = 0.
Shift = -4. * (rc**(-12) — rc**(-6))
do i = 0, NAtom - 1
do j =i+ 1, NAtom - 1
rij = Pos(j,:) - Pos(i,:)
rij = rij - L * dnint(rij / L)
d = sqgqrt(sum(rij * rij))
if (d > rc) then
cycle
end if
PEnergy = PEnergy + 4. * (d**(-12) - d**(-6)) + Shift
Fij = rij * (-48. * d**(-14) + 24. * d**(-12))
Forces (i, :) Forces(i,:) + Fij
Forces (j, :) Forces(j,:) - Fij
enddo
enddo
end subroutine

Let’s consider the features of this subroutine. The arguments Pos, L, and rc are all sent to the
function using the intent (in) attribute and are not modified. The float PEnergy is
intent (out), meaning that it will be returned from our function. The array Forces is
intent (inout). The reason that we did not use intent (out) for Forces is that this will
ultimately imply creation of a new array each time the function is called, after we compile with
f2py. By declaring the array as intent (inout), we will be able to re-use an existing array for
storing the forces, thus avoiding any performance hit that would accompany new array creation.
Finally, the arguments Dim and NAtom give the sizes of various array dimensions.

© 2025 M. Scott Shell 14/26 last modified 9/26/2025

Upon entering the subroutine, we zero the values of the potential energy and forces since we
will add to these variables during the pairwise loop. We also precalculate the values of any
constants that will be used during the loop, such as the energy shift due to the pairwise potential
truncation.

In the pairwise loop, we compute the minimum image distance using the code

rij
rij

Pos(j,:) - Pos(i,:)
rij - L * dnint(rij / L)

Notice that ri7j is a length-three array and thus these lines are actually implied loops over each
element. Here, dnint is the Fortran function returning the nearest integer of its argument as a
type double or real (8) (the same as a Python float).

The absolute distance is computed and we then determine whether or not a pair of atoms is
beyond the distance cutoff:

d = sqrt(sum(rij * rij))
if (d > rc) then

cycle
end if

The cycle statement in Fortran is equivalent to continue in Python, and it immediately
causes the innermost loop to advance and return to the next iteration. Here, we use it to skip
ahead to the next atom pair if two atoms are beyond the cutoff.

Notice the formatting of the i f statement. In general, Fortran conditional statements have the

form:

if (CONDITION) then
COMMANDS

else if (CONDITION) then
COMMANDS

else
COMMANDS

end if

The test condition can be any conditional expression built from comparison operators,
parenthesis, and compound statements. In Fortran, conditional comparisons are given by ==, <,
>, <=, >=and /=. Only the last of these, which signifies “not equals to”, is different from Python.
Moreover, in Fortran compound expressions can be written using .and., .or., and .not.
which differ from Python only by the presence of a preceding and trailing period. Similarly, the
Boolean constants in Fortran are written as . true. and . false.

After calculating the force, we add this vector to the force array for particle i and the negative
vector for particle j in the loop:

© 2025 M. Scott Shell 15/26 last modified 9/26/2025

Fij = rij * (-48. * d**(-14) + 24. * d**(-12))
Forces(i,:) = Forces(i,:) + Fij
Forces(j,:) = Forces(j,:) - Fij

Notice that, like Python, the power operator is written as * *.

In addition to the sgrt function used in this example, Fortran provides a large number of
mathematical operations, almost all of which can be used to operate on entire arrays at a time.
These functions include:

mod, sin, cos, tan, cotan, asin, acos, atan, sinh, cosh,
tanh, asinh, acosh, atanh, exp, 1log, 1logl0O, sqgrt,
ceiling, floor, nint, erf, erfc, huge, tiny, epsilon

For many of these, the default versions of the functions return single-precision numbers. To
obtain double-precision return values, the equivalent of Python floats, there are versions of the
functions that start with “d”, such as dnint from nint.

In addition there are a number of functions that return information about arrays or perform
array-specific mathematical operations:

count, sum, product, minval, maxval, minloc, maxloc,
matmul, transpose

Many of these functions accept an optional argument axis=X that will perform the indicated
operation over the specified axis only, returning an array of one smaller dimension. Keep in mind
that in Fortran the first axis is axis=1, as opposed to Python’s axis=0.

Maximizing computational efficiency in Fortran code
While the above code appears simple and straightforward, there are a number of ways in which
it might be rewritten to require much fewer floating point calculations.

First, we never need to find the absolute distance between two particles; rather, all computations
can be rewritten in terms of the squared distance. Thus we can remove the square root
operation, which will result in significant time savings.

Second, we can take much greater control over the exponentiation performed to specify exactly
the number of multiplications. In particular, the force calculation relies on terms that have
overlap with the potential calculation.

Third, we can copy the position of particle i into a temporary array to be used in the loop over j.
This will save the effort of having to locate i’s position in memory each time we loop through j,
as large multidimensional array access can be slow.

© 2025 M. Scott Shell 16/26 last modified 9/26/2025

With these considerations, our optimized computation looks like:

ljlibfortran. £90

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom)
implicit none
integer, intent(in) Dim, NAtom
real (8), intent(in), dimension(0:NAtom-1, 0:Dim-1) Pos
real (8), intent(in) L, rc
real (8), intent(out) PEnergy
real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) Forces
real (8) , dimension (Dim) rij, Fij, Posi
real (8) d2, id2, id6, idil2
real (8) rc2, Shift
integer i, j
PEnergy = 0.
Forces = 0.
Shift = -4. * (rc**(-12) - rc**(-6))
rc2 = rc * rc
do i = 0, NAtom - 1
!store Pos(i,:) in a temporary array for faster access in j loop
Posi = Pos(i,:)
do j =i+ 1, NAtom - 1
rij = Pos(j,:) - Posi

rij = rij - L * dnint(rij / L)
!compute only the squared distance and compare to squared cut

PEnergy = PEnergy + 4.
Fij = rij * ((-48.
Forces(i,:) =
Forces (j, :)
enddo
enddo
end subroutine

d2 = sum(rij * rij)
if (d2 > rc2) then

cycle
end if
id2 = 1. / d2 !inverse squared distance
idé = id2 * id2 * id2 !inverse sixth distance
idl2 = id6 * idé6 !inverse twelvth distance

* idl2 + 24.
Forces(i,:) + Fij
Forces (j, :)

* (idl2 - id6) + shift
* ide) * id2)

- Fij

Some general considerations for writing fast routines are:

e Store values that are used multiple times in temporary variables to avoid repeating

calculations. In the above example, 7;

stored as its own variable 1d6.

-6

;~ was used a number of times for each pair and

e Break down large polynomial expressions so that fewer multiplications are needed. For

example, x**3+x**2+x+1 requires four multiplication and three addition operations.

Alternatively, x* (x* (x+1) +1) +1 requires only two multiplication and three addition

operations, but gives the same result. In a similar manner, x* * 8 can be evaluated fastest

by((x**2)**2)**2

© 2025 M. Scott Shell

17/26 last modified 9/26/2025

If expensive mathematical operations like log, exp, or sqrt can be avoided, rewrite your
code to do so.

If the same elements of a large array are to be accessed many times in succession during
a loop, copy these values into a temporary variable first. Fortran will be able to read and
write values in variables or smaller, single-dimensional arrays much faster than in large
arrays because memory access can be slow and small variables can be optimized to sit in
faster parts of memory.

In Fortran, arrays are traversed most efficiently in memory if the leftmost array index
varies the fastest. For example, a double loop over Pos (1, J) is the fastest if 1 is the
inner loop and j the outer. Similarly, expressions like Pos (:,) are faster than
Pos (7, :) . Unfortunately, writing code in this way is not always possible given the way
in which it is natural to define arrays in Python and how Python passes variables to
Fortran. In the above example, we were not able to make the inner index vary fastest
because Pos was passed with the (x,y,z) coordinates in the second index, which we need
to access all at one time. However, if given the option, choose loops that vary the fastest
over the leftmost array indices.

Multiple functions in each Fortran file

We can put multiple subroutines inside the same Fortran file. Generally, itis a good idea to group

functions together in files by their purpose and level of generality. In other words, keep functions

specific to the potential energy function in a separate Fortran file from those which perform

generic geometric manipulations (e.g., rotation of a rigid body). When compiled for Python, all

of the subroutines in a given Fortran file will appear as functions in the same imported module.

Here is the example from above extended with a subroutine that advances the positions and

velocities of each atom using the velocity Verlet algorithm:

ljlibfortran.£90

subroutine EnergyForces (Pos, L, rc, PEnergy, Forces, Dim, NAtom)
implicit none
integer, intent(in) :: Dim, NAtom
real (8) , intent(in), dimension (0:NAtom-1, 0:Dim-1) :: Pos
real (8), intent(in) :: L, rc
real(8), intent(out) :: PEnergy
real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces
real(8), dimension(Dim) :: rij, Fij, Posi
real (8) :: d2, id2, id6, idl2
real (8) :: rc2, Shift
integer :: i, j
PEnergy = 0.
Forces = 0.
Shift = -4. * (rc**(-12) - rc**(-6))

© 2025 M. Scott Shell 18/26 last modified 9/26/2025

rc2 = rc * rc
do i = 0, NAtom - 1
!store Pos(i,:) in a temporary array for faster access in j loop
Posi = Pos(i,:)
do j=1i+ 1, NAtom - 1
rij = Pos(j,:) - Posi
rij = rij - L * dnint(rij / L)
!compute only the squared distance and compare to squared cut
d2 = sum(rij * rij)
if (d2 > rc2) then

cycle
end if
id2 = 1. / d2 !inverse squared distance
id6é = id2 * id2 * id2 !inverse sixth distance
idl2 = id6 * idé6 !inverse twelvth distance

PEnergy = PEnergy + 4. * (idl2 - idé) + Shift
Fij = rij * ((-48. * idl2 + 24. * id6) * id2)
Forces(i,:) = Forces(i,:) + Fij
Forces (j,:) Forces(j,:) - Fij
enddo
enddo
end subroutine

subroutine VVIntegrate(Pos, Vel, Accel, L, CutSq, dt, KEnergy, PEnergy, Dim, NAtom)
implicit none
integer, intent(in) :: Dim, NAtom
real(8), intent(in) :: L, CutSq, dt
real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos, Vel, Accel
real(8), intent(out) :: KEnergy, PEnergy
external :: EnergyForces
Pos = Pos + dt * Vel + 0.5 * dt*dt * Accel
Vel = Vel + 0.5 * dt * Accel
call EnergyForces (Pos, L, CutSq, PEnergy, Accel, Dim, NAtom)
Vel = Vel + 0.5 * dt * Accel
KEnergy = 0.5 * sum(Vel*Vel)
end subroutine

Notice that the VVIntegrate function calls the EnergyForces function within it. When a
Fortran function calls another function, we must also declare the latter using the external
keyword as we wrote above. This tells the compiler that the function we are calling lies
somewhere else in the code we wrote. In addition, called subroutines must be preceded with
the keyword call.

Compiling and debugging

Once we have written our Fortran source code, we must compile it. Ultimately this will be done
automatically by f2py in the creation of a Python module from the .f90 file. However, to debug
our code, it is often useful to first try to compile the Fortran source directly. To compile our code
above, we write at the command line:

c:\> gfortran -c ljlibfortran.£90

If there were no errors in our program, gfortran will return quietly with no output and a file
ljlib3.0 will have been created, an object file that can be subsequently linked into an executable

© 2025 M. Scott Shell 19/26 last modified 9/26/2025

file. We will have no use for the .o file here, since we are only concerned with identifying errors
in our code at this point, and thus it is safe to delete it.

If gfortran finds a problem with our code, it will return an error message. For example, if we used
the assignment k=1 in our code, but forgot to explicitly define the type of k, gfortran would
return:

ljlibfortran.£90:50.5:

k=1
1
Error: Symbol 'k' at (1) has no IMPLICIT type

In the first line, we are given the line (50) and column (5) numbers where it found the error, as
well as the specific error message. The number 1 is used underneath the offending line to show
where the error occurred.

Sometimes our program compiles just fine, but we still experience numerical problems in running
our code. At this point, it often becomes useful to track values of variables throughout the
program execution. In Python, we could place print statements throughout the code to
periodically report on variable values. If we also need to see the values of variables during called
Fortran routines, we can similarly place print statements within our Fortran code during test
production. In Fortran a print statement has the form:

{ print *, varl, var2, var3

“ux n

Here, one must always include the “*,” indicator after the Fortran print statement to tell it that
you want to send the values to the terminal (screen), and not to a file or attached device.

There are also many Fortran source code editors with a graphical user interface that color-code
statements and functions for ease of viewing, and that will often check for simple errors. The
Spyder editor included with the Anaconda Distribution is one such editor.

Preparing code for f2py

Generally, if we write Fortran code that strongly types and specifies intents for all variables, then
there is very little that we need to do before using f2py to convert it into a Python-importable
module. However, for array variables with the intent (inout) attribute, we typically need
to add a small directive that tells f2py how we want to deal with this particular kind of variable.
f2py directives are small comments at the beginning of lines (no preceding spaces) that start as
“1 f2py”. For intent (inout) variables, we simply add

'f2py intent(in,out) :: VAR

© 2025 M. Scott Shell 20/26 last modified 9/26/2025

to the line after an argument declaration statement.

Consider the EnergyForces function. Here, we need to place an f2py directive immediately
after the type declaration for the Forces variable:

real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces
'f2py intent(in,out) :: Forces

IIIII

Since our directive begins with the Fortran comment character “!”, it will not affect compilation
by Fortran during debugging. However, the addition of intent (in, out) :: Forces will
tell f2py that we want the Python version of our Fortran function to treat the array Forces as

an argument and also as a return value as a part of the return tuple.

We need to similarly modify the code for VVIntegrate:

real (8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos, Vel, Accel
'f2py intent(in,out) :: Pos, Vel, Accel
Running f2py

Once we have written and debugged our Fortran source code, we are ready to compile it into a
Python module using the f2py utility. If your environment variables are set up correctly, you
should be able to run f2py directly from the command line or terminal. On a Windows system,
start an Anaconda Prompt to open a terminal.

Running f2py without any arguments prints out a long help file:

c:\> f2py.py

Usage:
1) To construct extension module sources:
f2py [<options>] <fortran files> [[[only:]||[skip:]1] \
<fortran functions>] \
[: <fortran files> ...]
2) To compile fortran files and build extension modules:
f2py -c [<options>, <build flib options>, <extra options>] <fortran files>
3) To generate signature files:
f2py -h <filename.pyf> ...< same options as in (1) >
Description: This program generates a Python C/API file (<modulename>module.c)
that contains wrappers for given fortran functions so that they

can be called from Python. With the -c option the corresponding
extension modules are built.

© 2025 M. Scott Shell 21/26 last modified 9/26/2025

f2py is a powerful utility that enables a lot of control over how modules are compiled. Here we
will only describe a specific subset of its abilities. To compile our code into a module, we use a
command of the following form:

f2py.py —c —m MODULENAME SOURCE.f£f90

Here, MODULENAME is the name we want for our module after it is compiled. SOURCE. £90 is
the name of the file containing the Fortran source code. The —c and —m flags indicate compilation
and the name specification, respectively.

Sometimes, particularly on Windows platforms, we need to explicitly specify the compilers to
make the command work:

f2py.py —c —m MODULENAME SOURCE.f90 --fcompiler=gnu95 --compiler=mingw32

The option ——fcompiler=gnu95 tells f2py to use the GFortran compiler that we downloaded
and installed earlier. There are other Fortran compilers that will work with f2py that could be
specified here. To see what compilers are present and recognized on your system, use the
following command:

c:\> f2py.py —-c --help-fcompiler
Fortran compilers found:
--fcompiler=compaqv DIGITAL or Compaq Visual Fortran Compiler (6.6)
--fcompiler=gnu95 GNU Fortran 95 compiler (4.4.0)
Compilers available for this platform, but not found:
--fcompiler=absoft Absoft Corp Fortran Compiler
--fcompiler=g95 G95 Fortran Compiler
--fcompiler=gnu GNU Fortran 77 compiler
--fcompiler=intelev 1Intel Visual Fortran Compiler for Itanium apps
--fcompiler=intelv Intel Visual Fortran Compiler for 32-bit apps
Compilers not available on this platform:
--fcompiler=compaq Compaqg Fortran Compiler

--fcompiler=hpux HP Fortran 90 Compiler
--fcompiler=ibm IBM XL Fortran Compiler
--fcompiler=intel Intel Fortran Compiler for 32-bit apps

--fcompiler=intele Intel Fortran Compiler for Itanium apps
--fcompiler=intelem Intel Fortran Compiler for EM64T-based apps

--fcompiler=lahey Lahey/Fujitsu Fortran 95 Compiler
--fcompiler=mips MIPSpro Fortran Compiler

--fcompiler=nag NAGWare Fortran 95 Compiler
--fcompiler=none Fake Fortran compiler

--fcompiler=pg Portland Group Fortran Compiler
--fcompiler=sun Sun or Forte Fortran 95 Compiler
--fcompiler=vast Pacific-Sierra Research Fortran 90 Compiler

For compiler details, run 'config fc --verbose' setup command.

Part of the f2py process involves the automated writing and compilation of C wrapper code
around the Fortran routines. The option ——compiler=mingw32 tells f2py to use the MinGW
C compiler that comes with gfortran. This compiler is specific to the Windows system. On other

© 2025 M. Scott Shell 22/26 last modified 9/26/2025

systems, this option might be omitted to use the default C compiler, or another C compiler could
be specified directly (e.g., ——compiler=gcc).

Running f2py for our Lennard-Jones example looks something like the following:

c:\>f2py.py -¢ -m ljlibfortran ljlibfortran.£f90
Cannot use distutils backend with Python>=3.12, using meson backend instead.
Using meson backend
Will pass --lower to f2py
See https://numpy.org/doc/stable/f2py/buildtools/meson.html
Reading fortran codes...
Reading file 'ljlibfortran.f90' (format:free)
Post-processing. ..
Block: ljlibfortran
Block: calcenergyforces
Block: vvintegrate
Applying post-processing hooks...
character backward compatibility hook
Post-processing (stage 2)...
Building modules. ..
Building module "ljlibfortran"...
Generating possibly empty wrappers"
Maybe empty "ljlibfortran-f2pywrappers.f"
Constructing wrapper function "calcenergyforces"...
penergy, forces = calcenergyforces (pos,l,rc,forces, [dim,natom])
Generating possibly empty wrappers"
Maybe empty "ljlibfortran-f2pywrappers.f"
Constructing wrapper function "vvintegrate"...
pos,vel,accel, kenergy,penergy = vvintegrate (pos,vel,accel,l,cutsq,dt, [dim,natom])
Wrote C/API module "ljlibfortran" to file ".\ljlibfortranmodule.c"
The Meson build system
Version: 1.6.0
Source dir: C:\Users\mscot\AppData\Local\Temp\tmpfdwd5z9g
Build dir: C:\Users\mscot\AppData\Local\Temp\tmpfdwd5z9g\bbdir
Build type: native build
Project name: ljlibfortran
Project version: 0.1
Fortran compiler for the host machine: gfortran (gcc 15.1.0 "GNU Fortran (conda-forge gcc 15.1.0-
3) 15.1.0")
Fortran linker for the host machine: gfortran 1d.bfd 2.44
C compiler for the host machine: cc (gcc 15.1.0 "cc (conda-forge gcc 15.1.0-3) 15.1.0")
C linker for the host machine: cc 1ld.bfd 2.44
Host machine cpu family: x86_64
Host machine cpu: x86_64
Program C:\Users\mscot\anaconda3\python.exe found: YES (C:\Users\mscot\anaconda3\python.exe)
Run-time dependency python found: YES 3.13
Library quadmath found: YES
Build targets in project: 1

Found ninja-1.12.1 at C:\Users\mscot\anaconda3\Library\bin\ninja.EXE

INFO: autodetecting backend as ninja

INFO: calculating backend command to run: C:\Users\mscot\anaconda3\Library\bin\ninja.EXE -C
C:/Users/mscot/AppData/Local/Temp/tmpfdwd5z9g/bbdir

ninja: Entering directory 'C:/Users/mscot/AppData/Local/Temp/tmpfdwd5z9g/bbdir’

[6/6] Linking target ljlibfortran.cp313-win_amd64.pyd

A fair amount of text is outputted when running f2py. You will know that your code has compiled
successfully when (1) there are no signs of errors, and (2) a compiled module file now exists. On
Windows, your module file will end in .pyd, while on Linux it will typically end in .so. The name
of your file is that which you specified in the MODULENAME option.

The f2py utility will generate automatically all of the code necessary to pass NumPy arrays in
between Python and your compiled Fortran routines. In particular, it makes sure that function

© 2025 M. Scott Shell 23/26 last modified 9/26/2025

arguments obey the right types and dimensioning. As a part of this effort to make sure Python
arrays are Fortran-friendly, NumPy can sometimes make a copy of an input array to send to the
compiled function.

Sometimes it is convenient to know when copies are made of arrays sent to Fortran routines,
rather than the original Python arrays themselves, since such copying can create a performance
hit. One can compile f2py with the additional option -DF2PY_REPORT_ON_ARRAY_COPY=1 to
have Fortran-compiled routines print out messages in real-time each time such a copying event
occurs. This is useful for debugging / optimizing code, but final production code should not use
this option.

Help with f2py
There are a number of online resources for reading about additional options with and for
troubleshooting the f2py utility. The main website can be found at:

https://numpy.org/doc/stable/f2py/

Importing and using f2py-compiled modules in Python
Once we have compiled our Fortran source code into a module using f2py, it is as easy to import
as any other module:

>>> import ljlibfortran

f2py embeds information about the functions it compiles into docstrings. To see these
docstrings, use the he1p function:

>>> help(ljlibfortran)
Help on module ljlibfortran:

NAME
ljlibfortran
DESCRIPTION
This module 'ljlibfortran' is auto-generated with f2py (version:2.2.5).
Functions:
penergy,forces = calcenergyforces(pos,1l,rc,forces,dim=shape(pos, 1), natom=shape (pos,
0))
pos,vel,accel, kenergy,penergy = vvintegrate (pos,vel,accel,l,cutsq,dt,dim=shape (pos,

1) ,natom=shape (pos, 0))

DATA
_ f2py numpy version = '2.2.5'
calcenergyforces = <fortran function calcenergyforces>
vvintegrate = <fortran function vvintegrate>

VERSION
2.2.5

FILE

© 2025 M. Scott Shell 24/26 last modified 9/26/2025

i c:\users\mscot\onedrive\courses\che210d\2025\scripts\python\ljlibfortran.cp313-
{ win_amd64.pyd

This summary tells us that the module contains two functions, energyforces and
vvintegrate. Notice that f2py converts all Fortran variable and function names to lowercase
by default.

In addition to their names, the docstring tells us the format of a call to each of the functions. We
can get more detailed information by examining the docstrings of the individual functions. We
need to actually print out the docstring to see the details:

>>> print(ljlibfortran.calcenergyforces. doc_)
penergy, forces = calcenergyforces (pos,1l,rc, forces, [dim,natom])

Wrapper for ~ "calcenergyforces °

Parameters

pos : input rank-2 array('d') with bounds (natom,dim)

1 : input float

rc : input float

forces : input rank-2 array('d') with bounds (natom,dim)

Other Parameters

dim : input int, optional
Default: shape(pos, 1)

natom : input int, optional
Default: shape (pos, 0)

Returns
penergy : float
forces : rank-2 array('d') with bounds (natom,dim)

Here, we are told that there are four arguments we must provide: pos, 1, rc, and forces.
These arguments correspond to any for which we specified the intent (in) or
intent (inout) attributes. However, we do not need to specify the dimension variables dim
and natom, as these will be taken automatically from the shape of the argument pos.

The docstring also tells us that the function will return two arguments, penergy and forces.
These correspond to any Fortran arguments for which we specified intent (out) or
intent (inout). Thus a call from Python to the energyforces routine would look like:

é >>> penergy, forces = ljlib.energyforces(pos, 1, rc, forces)

where we would have needed to supply the vector of positions, box length, cutoff, and force
array. If we had specified intent (out) for forces, it would not have appeared as an
argument and Python instead would have created a new force array with each function call.

© 2025 M. Scott Shell 25/26 last modified 9/26/2025

Similarly, we can examine the docstring of the vvintegrate function:

>>> print(ljlibfortran.vvintegrate. doc_)

pos,vel , accel , kenergy,penergy =
vvintegrate (pos,vel, accel,l,cutsq,dt, [dim,natom])

Wrapper for "~ “vvintegrate

Parameters

pos : input rank-2 array('d') with bounds (natom,dim)
vel : input rank-2 array('d') with bounds (natom,dim)
accel : input rank-2 array('d') with bounds (natom,dim)
1 : input float

cutsqg : input float

dt : input float

Other Parameters

dim : input int, optional
Default: shape(pos, 1)

natom : input int, optional
Default: shape (pos, 0)

Returns

pos : rank-2 array('d') with bounds (natom,dim)
vel : rank-2 array('d') with bounds (natom,dim)
accel : rank-2 array('d') with bounds (natom,dim)
kenergy : float

penergy : float

A call to vvintegrate would therefore look like:

>>> pos, vel, accel, kenergy, penergy = ljlib.vvintegrate (pos, vel, accel,
1, cutsq, dt)

Note that f2py automatically makes the conversions / equivalencies of Fortran real (8) and
Python float types.

And that’s it! You are now ready to use your Fortran routines with Python.

Learning more about Fortran

It is beyond the scope of this document to cover the entire Fortran language. However, a number
of excellent tutorials for Fortran programming are available online, and many digital assistants
(like ChatGPT) are able to produce drafts of Fortran code. Keep in mind, however, that you
probably only need a small subset of Fortran knowledge if your goal is to simply write fast
numerical routines that are compiled for Python, where Python then does more of the complex
programming work and organization.

© 2025 M. Scott Shell 26/26 last modified 9/26/2025

