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Writing fast routines for Python 
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Overview 
Python, unfortunately, does not always come pre-equipped with the speed necessary to perform 

intense numerical computations in user-defined routines.  Ultimately, this is due to Python’s 

flexibility as a programming language.  Very efficient programs are often inflexible: every variable 

is typed as a specific numeric format and all arrays have exactly specified dimensions.  Such 

inflexibility enables programs to assign spots in memory to each variable that can be accessed 

efficiently, and it eliminates the need to check the type of each variable before performing an 

operation on it. 

We will discuss three ways that we can write computationally efficient Python code.  The first is 

to make good use of numpy and scipy routines whenever we can, rather than writing our own 

code.  The functions and classes in these modules reference fast, compiled code behind the scene 

that is highly optimized and takes advantage of modern hardware architectures.  For example, 

we could compute pairwise distances between a particle i and all other particles j using the 

following Python code: 

def compute_pair_distances1(i, Pos): 

    N, Dim = Pos.shape 

    dist = np.zeros((N,), dtype=float) 

    for j in range(N): 

        if i==j: continue 

        dist[j] = np.sqrt(np.sum((Pos[i] - Pos[j])**2)) 

    return dist 

Or, we could use numpy routines without an explicit loop: 

def compute_pair_distances2(i, Pos): 

    return np.sqrt(np.sum((Pos[:,:] - Pos[i,:])**2, axis=1)) 

For a 1000-particle system, the second function is over 150x faster than the first. 

Still, it isn’t always possible to make use of built-in numpy routines.  Fortunately, we can combine 

Python code with compiled code and still maintain the flexibility and coding ease that Python 

provides.  We can do this because typically our simulations are dominated by a few bottleneck 

steps, while the remainder of the code we write is insignificant in terms of computational 

demands.  Things like outputting text to a display, writing data to files, setting up the simulation, 

keeping track of energy and other averages, and even modifying the simulation while its running 

(e.g., changing the box size or adding/deleting a particle) are actually not that computationally 

intensive.  On the other hand, computing the total energies and forces on each atom in a pairwise 

loop is quite expensive.  This is an order N2 operation, where the number of atoms N typically 

varies from 100 to 10000. 
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The second approach to fast code is to use a just-in-time Python compiler for these kind of 

bottleneck routines.  A number of such packages exist for this purpose for Python, including 

Numba and Cython.  The former is far much easier to use, albeit less amenable to detailed 

customization, and so we will only discuss it here.  Numba essentially takes Python functions, and 

translates them into much faster machine code that is compiled on the fly. 

The third and typically most efficient solution is to write the expensive steps in a fast language 

like Fortran and to keep everything else in Python.  Fortunately, this is a very easy task.  Numpy 

provides simple routines for compiling fast code written in Fortran into modules that can be 

imported into Python and used directly.  Functions in that module can be called as if they were 

written in Python, but with the performance of compiled code.   

In compiling Fortran code for Python, we will use a specific tool called f2py that completely 

automates the compilation of Fortran code into Python modules.  The reason we will use this 

instead of other approaches is that: (1) f2py is relatively stable, very simple to use, and comes 

built-in with NumPy; (2) Fortran, albeit a somewhat archaic and inflexible language, is simple and 

actually one of the fastest compiled languages; and (3) a large amount of legacy code in the 

scientific community is written in Fortran and thus knowing some aspects of it helps understand 

and incorporate this code into your own. 

The following benchmarks give rough speed comparisons for Exercise 2 in the course, as a 

function of number of atoms (lower values are better).  Here, “broadcast” means the use of 

numpy functions to compute distances in the j-loop.  Courtesy of Jacob Monroe: 
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Installation 
Everything you will need is open source or freely licensed.  Moreover, all of the utilities discussed 

below are cross-platform.  If you have installed the Anaconda Distribution, then you should have 

most of the necessary files available, including Numba.  To use the Fortran routines, you will need 

to add a Fortran compiler.  See the course syllabus for details.   

Using Numba to accelerate Python calculations with minimal effort 
Numba is a just-in-time compiler for Python, which means that it can translate Python into 

machine code on-the-fly for designated functions, which then run significantly faster.  The 

compilation step adds some overhead the first time that a function is called, but this only happens 

once during the course of the program.  This means that expensive routines called many times, 

like the calculation of pairwise energies and forces, can be dramatically accelerated. 

Let’s consider the Lennard-Jones system.  We could write the following (unoptimized) Python 

code to compute the energy and forces: 

def calcenergyforces(Pos, L, rc, Force): 

    NAtom, Dim = Pos.shape 

    Shift = -4. * (rc**(-12) - rc**(-6)) 

    rc2 = rc * rc 

    iL = 1./L 

    PEnergy = 0. 

    Force.fill(0.) 

    for i in range(NAtom): 

        Posi = Pos[i,:] 

        for j in range(0,i): 

            rij = Pos[j,:] - Posi 

            rij = rij - L * np.rint(rij * iL) 

            d2 = np.sum(rij**2) 

            if d2 > rc2: 

                continue     

            id2 = d2**(-1)             #inverse squared distance 

            id6 = id2 * id2 * id2      #inverse sixth distance 

            id12 = id6 * id6           #inverse twelvth distance 

            PEnergy += 4. * (id12 - id6) + Shift 

            Fij = rij * ((-48. * id12 + 24. * id6) * id2) 

            Force[i,:] += Fij 

            Force[j,:] -= Fij 

    return PEnergy, Force 

Let’s consider a test where we use this loop to run 100,000 MD steps with a 108-particle system; 

the timing results are machine-specific, but it will illustrate the speedups.  Running as pure 

Python, the test requires 1.06 hours – not very fast at all. 

Now let’s use Numba to compile this routine.  We first import using 

from numba import njit 
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and then we add a decorator to the top of our function: 

@njit 

def calcenergyforces(Pos, L, rc, Force): 

    NAtom, Dim = Pos.shape 

    Shift = -4. * (rc**(-12) - rc**(-6)) 

    rc2 = rc * rc 

    iL = 1./L 

    PEnergy = 0. 

    Force.fill(0.) 

    for i in range(NAtom): 

        Posi = Pos[i,:] 

        for j in range(0,i): 

            rij = Pos[j,:] - Posi 

            rij = rij - L * np.rint(rij * iL) 

            d2 = np.sum(rij**2) 

            if d2 > rc2: 

                continue     

            id2 = d2**(-1)             #inverse squared distance 

            id6 = id2 * id2 * id2      #inverse sixth distance 

            id12 = id6 * id6           #inverse twelvth distance 

            PEnergy += 4. * (id12 - id6) + Shift 

            Fij = rij * ((-48. * id12 + 24. * id6) * id2) 

            Force[i,:] += Fij 

            Force[j,:] -= Fij 

    return PEnergy, Force 

A decorator is an instruction to Python to process a function in a special way.  Here, njit signals 

to Numba to use the “no python” mode of its just-in-time compiler; “no python” means that 

Numba will compile to the fastest code possible by omitting bindings to the Python interpreter.   

Running our test, we find that there is a small delay at the start of the program, when the routine 

is first compiled.  But then our 100,000 MD steps require 129 seconds, a 29x speedup relative to 

pure Python!   

We can make Numba-compiled routines even faster if we make use of Numpy array functions to 

accomplish part of the calculations.  Notice that we calculate the squared distance between all 

i,j pairs.  Let’s rewrite the code to use Numpy functions to do this. 

@njit 

def calcenergyforces(Pos, L, rc, Force): 

    NAtom, Dim = Pos.shape 

    Shift = -4. * (rc**(-12) - rc**(-6)) 

    rc2 = rc * rc 

    iL = 1./L 

    PEnergy = 0. 

    Force.fill(0.) 

    for i in range(NAtom): 

        #here, testing for i < j 

        #distance vectors 

        rijarr = Pos[:i,:] - Pos[i,:] 

        #minimum image 
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        rijarr = rijarr - L * np.rint(rijarr * iL) 

        #squared distance 

        d2arr = np.sum(rijarr*rijarr, axis=1) 

        for j in range(0,i): 

            d2 = d2arr[j] 

            if d2 > rc2: 

                continue 

            rij = rijarr[j]                 

            id2 = d2**(-1)            #inverse squared distance 

            id6 = id2 * id2 * id2     #inverse sixth distance 

            id12 = id6 * id6          #inverse twelvth distance 

            PEnergy += 4. * (id12 - id6) + Shift 

            Fij = rij * ((-48. * id12 + 24. * id6) * id2) 

            Force[i,:] += Fij 

            Force[j,:] -= Fij 

    return PEnergy, Force 

Notice that we use Numpy array operations to compute all of the pair distance vectors from a 

particle i to all j < i, then the minimum image distances, and finally the squared distances. 

Now our test code requires 53.9 seconds, a 70x speedup relative to pure Python and a 2.4x 

speedup relative to the first Numba-compiled routine.  In general, we should try to use Numpy 

array operations within Numba-compiled code whenever we can, since these are highly 

optimized and will result in the fastest calculations. 

For comparison, if we had written the calcenergyforces routine in Fortran and compiled it 

for Python using f2py – as we discuss below – the same test would take only 16.9 seconds, a 224x 

speedup from pure Python and faster than the Numba-compiled routines.  However, this requires 

more effort, notably programming in a language other than Python and pre-compiling a module. 

There is one more way to accelerate Numba-optimized routines, and that involves parallelizing 

them so that Numba can take advantage of modern CPU hardware that can perform multiple 

calculations simultaneously.  This will increase the load on our computational resources, but it 

can also produce substantial increases in speed.  We modify our code as follows: 

from numba import njit, prange 

 

@njit(parallel=True) 

def calcenergyforces(Pos, L, rc, Force): 

    NAtom, Dim = Pos.shape 

    Shift = -4. * (rc**(-12) - rc**(-6)) 

    rc2 = rc * rc 

    iL = 1./L 

    PEnergy = 0. 

    Force.fill(0.) 

    for i in prange(NAtom): 

        #here, testing for i < j 

        #distance vectors 

        rijarr = Pos[:i,:] - Pos[i,:] 

        #minimum image 
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        rijarr = rijarr - L * np.rint(rijarr * iL) 

        #squared distance 

        d2arr = np.sum(rijarr*rijarr, axis=1) 

        for j in range(0,i): 

            d2 = d2arr[j] 

            if d2 > rc2: 

                continue 

            rij = rijarr[j]                 

            id2 = d2**(-1)            #inverse squared distance 

            id6 = id2 * id2 * id2     #inverse sixth distance 

            id12 = id6 * id6          #inverse twelvth distance 

            PEnergy += 4. * (id12 - id6) + Shift 

            Fij = rij * ((-48. * id12 + 24. * id6) * id2) 

            Force[i,:] += Fij 

            Force[j,:] -= Fij 

    return PEnergy, Force 

The function prange acts like range, but allows Numba to take that particular loop and distribute 

it across multiple threads simultaneously.  Note that this only works if the loop does not have 

cross iteration dependencies, e.g., each pass through the loop is independent of any other.  Here, 

we parallelize the outer loop over particle i. 

Now, our test case requires just 14.4 seconds – much faster!  This even beats the Fortran routine, 

although the comparison isn’t fair because the Fortran version below hasn’t been parallelized.  

It’s also important to note that the parallel Numba version uses around 90% of our CPU when it 

is running, versus 10-20% for the non-parallel one. 

Fortran programming 
Fortran offers another way to build very fast Python modules and functions, although it requires 

knowledge of the Fortran programming language.  Before we begin compiling Fortran routines 

for Python, we need some background on programming in Fortran.  Fortunately, we only need 

to know the basics of the Fortran language since we will only be writing numerical functions and 

not coding entire Fortran projects.  

We will be using the Fortran 90 standard.  There are older versions of Fortran, notably Fortran 

77, that are much more difficult to read and use.  Fortran 90 files all end in the extension .f90 and 

we can put multiple functions in a single .f90 file—these functions will eventually each appear as 

separate member functions of the Python module we make from this Fortran file.   

Fortran 90 code is actually fairly straightforward to develop, but it is important to keep in mind 

some main differences from Python: 

• Fortran is not case-sensitive.  That is, the names atom, Atom, and ATOM all designate 

the same variable.  



© 2025 M. Scott Shell 8/26 last modified 9/26/2025 

• The comment character is an explanation point, “!”, instead of the pound sign in Python. 

• Spacing is unimportant in Fortran.  Instead of using spacing to show the commands 

included with a subroutine or loop, Fortran uses beginning and closing statements.  For 

example, subroutines begin with subroutine MyFunction(….) and end with end 

subroutine. 

• Fortran does make a distinction between functions that return single variable values and 

subroutines that do not return anything but that can modify the contents of variables sent 

to it.  However, in writing code to be compiled for Python, we will always write 

subroutines and therefore will not need to worry about functions.  We will often use the 

nomenclature "function" interchangeably with subroutine.  

• Fortran does not have name binding.  Instead, if you change the value of a variable passed 

to a subroutine via the assignment operation (=), the value of that variable is changed for 

good.  Fortunately, Fortran lets us declare whether or not variables can be modified in 

functions, and a compile error will be thrown if we violate our own rules. 

• Every variable should be typed.  That means that, at the beginning of a function, we should 

specify the type and size of every variable passed to it, passed from it, and created during 

it.  This is very important to the speed of routines.  More on this later. 

• Fortran has no list, dictionary, or tuple capabilities.  It only has arrays.  When we iterate 

over an array using a loop, we must always create an integer variable that is the loop 

index.  Moreover, Fortran loops are inclusive of the upper bound. 

• Fortran uses parenthesis () rather than brackets [] to access array elements. 

• Fortran array indices start at 1 by default, rather than at 0 as in Python.  This can be very 

confusing, and we will always explicitly override this behavior so that arrays start at 0. 

Let’s start with a specific example to get us going.  We will write a function that takes in a (N,3) 

array of N atom positions, computes the centroid (the average position), and makes this point 

the origin by centering the original array.  In Python /  NumPy, we could accomplish this task 

using a single line: 

Pos = Pos – Pos.mean(axis=0) 

An equivalent Fortran subroutine would look the following: 

subroutine CenterPos(Pos, Dim, NAtom) 

    implicit none 

    integer, intent(in) :: Dim, NAtom 
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    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos 

    real(8), dimension(0:Dim-1) :: PosAvg 

    integer :: i, j 

    PosAvg = sum(Pos, 1) / dble(NAtom) 

    do i = 0, NAtom - 1 

        do j = 0, Dim - 1 

            Pos(i,j) = Pos(i,j) - PosAvg(j) 

        end do 

    end do 

end subroutine 

In the above example, we defined a subroutine called CenterPos that takes three arguments: 

the array Pos, the dimensionality Dim, and the number of atoms NAtom.  The subroutine is 

entirely contained within the initial subroutine and end subroutine statements. 

Immediately after the declaration statement, we use the phrase implicit none.  It is a good 

habit always to include this statement immediately after the declaration.  It tells the Fortran 

compiler to raise an error if we do not define a variable that we use.  Defining variables is critical 

to the speed of our code. 

Next we have a series of statements that define all variables, including those that are sent to the 

function.  These statements have the following forms.  For arguments to our function that are 

single values, we use: 

type TYPE, intent(INTENT) :: NAME 

For array arguments, we use: 

type TYPE, intent(INTENT), dimension(DIMENSIONS) :: NAME 

Finally, for other variables that we use within the function, but that are not arguments/inputs or 

outputs, we use: 

type TYPE :: NAME 

or, for arrays, 

type TYPE, dimension(DIMENSIONS) :: NAME 

Here, TYPE is a specifier that tells the function the numeric format of a variable.  The Fortran 

equivalents of Python types are: 

Python / NumPy Fortran 
float real(8) (also called double) 
int integer 

bool logical 
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For arguments, we use the INTENT option to tell Python what we are going to do with a variable.  

There are three such options, 

intent meaning 
in The variable is an input to the subroutine only.  Its value 

must not be changed during the course of the subroutine. 
out The variable is an output from the subroutine only.  Its 

input value is irrelevant.  We must assign this variable a 
value before exiting the subroutine. 

inout The subroutine both uses and modifies the data in the 
variable.  Thus, the initial value is sent and we ultimately 
make modifications base on it. 

 

For array arguments, we also specify the DIMENSIONS of the arrays.  For multiple dimensions, 

we use comma-separated lists.  The colon “:” character indicates the range of the dimension.  

Unlike Python, however, the upper bound is inclusive.  The statement 

real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos 

says that the first axis of Pos varies from 0 to and including NAtom-1, and the second axis from 

0 to and including Dim-1.  We could have also written this statement as 

real(8), intent(inout), dimension(NAtom, Dim) :: Pos 

In which case the lower bound of each dimension would have been 1 rather than 0.  Instead, we 

explicitly override this behavior to keep Fortran array indexing the same as that in Python, for 

clarity in our programming. 

Notice that the dimensions are variables that we must declare in and pass to the subroutine when 

it is called.  This, again, is a step that helps achieve faster code.  Eventually f2py will automatically 

pass these dimensions when the Fortran code is called as a Python module, so that these 

dimensional arguments are hidden.  For that reason, one should always put any arguments that 

specify dimensions at the end of the argument list.  Notice that all of the dimension variables 

are at the end of our subroutine declaration: 

subroutine CenterPos(Pos, Dim, NAtom) 

Notice also that we can list multiple variable names that have the same type, dimensions (if 

array), and intent (if arguments) on the same line in place of NAME. 

In addition to the subroutine arguments, we define three additional variables that are used only 

within our function, created upon entry and destroyed upon exit: 
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real(8), dimension(0:Dim-1) :: PosAvg 

integer :: i, j 

PosAvg is a length-three array that we will use to hold the centroid position we compute.  The 

integers i and j are the indices we will use when writing loops. 

The first line of our program computes the centroid (average position) of our array: 

PosAvg = sum(Pos, 1) / dble(NAtom) 

The Fortran function sum takes an array argument and sums it, optionally over a specified 

dimension.  Here, we indicate a summation over the first axis, that corresponding to the particle 

number.  In other words, Fortran sums all of the x, y, and z values separately and returns a length-

three array.  It is very important to notice here that the first axis of an array is indicated with 1 

rather than 0, as would be the case in Python.  This is because Fortran ordering naturally begins 

at 1.   

The dble function above takes the integer NAtom and converts it to a double-precision number, 

e.g., of type real(8).  It is a good idea to explicitly convert types using such functions in 

Fortran.  Not doing so will force the compiler to insert conversions that many not be what we 

desired, and could result in extra unanticipated steps that might slow performance.  In addition 

to dble, int(X) will convert any argument X to an integer type. 

The lines that follow modify the Pos array to subtract the centroid positions from it: 

do i = 0, NAtom - 1 

    do j = 0, Dim - 1 

        Pos(i,j) = Pos(i,j) - PosAvg(j) 

    end do 

end do 

Notice that we have two loops that iterate over the array indices.  Each loop has the following 

form: 

do VAR = START, STOP 

    COMMANDS 

end do 

In Fortran, such do loops involve integers and are inclusive of both the starting and stopping 

values.  Indentation here is optional and just for ease of reading, because it is the end do 

command that signals the end of a loop. 

Like Python, Fortran allows array operations.  What this means internally is that Fortran will write 

out the implied do loop over array elements if we perform array calculations.  We could therefore 

simplify the above code by removing the inner loop: 
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subroutine CenterPos(Pos, Dim, NAtom) 

    implicit none 

    integer, intent(in) :: Dim, NAtom 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos 

    real(8), dimension(0:Dim-1) :: PosAvg 

    integer :: i 

    PosAvg = sum(Pos, 1) / dble(NAtom) 

    do i = 0, NAtom - 1 

        Pos(i,:) = Pos(i,:) - PosAvg(:) 

    end do 

end subroutine 

Here, we use Fortran slicing notation to indicate that we want to apply the mathematical 

operation to each array element.   

Slicing of Fortran arrays is very similar to that of NumPy, and uses the start:stop:step 

notation, where each of these can be optional.  One small difference is that the upper bounds of 

arrays are inclusive in Fortran, whereas they are exclusive in Python.  In other words, 

PosAvg[:2] takes elements 0 through 1 in Python and PosAvg(:2) takes elements 0 

through 2 in Fortran. 

There is one other, major difference between slicing arrays in Fortran and NumPy: the former 

does not permit broadcasting.  That means that every array in a mathematical operation designed 

to operate elementwise must be the exact same dimensions and size. In NumPy, on the other 

hand, broadcasting can be used to automatically up-convert arrays to higher dimensionalities 

when performing such operations.   

A Fortran case study 
To illustrate the Fortran language, we will consider the following subroutine that computes the 

total potential energy and force on each atom for a system of Lennard-Jones particles.  Here, 

total potential energy is given by a sum of pairwise interactions: 

𝑈 = ∑ 𝑢(𝑟𝑖𝑗)

𝑖<𝑗

 

𝑢(𝑟𝑖𝑗) = 4𝜖 [(
𝑟𝑖𝑗

𝜎
)

−12

− (
𝑟𝑖𝑗

𝜎
)

−6

] 

The force in the x-direction on a particular atom is given by: 

𝐹𝑖,𝑥 = −
𝜕𝑈

𝜕𝑥𝑖
 

= −
𝜕

𝜕𝑥𝑖
∑ 𝑢(𝑟𝑖𝑗)

𝑗≠𝑖
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= − ∑
𝜕𝑟𝑖𝑗

𝜕𝑥𝑖

𝜕

𝜕𝑟𝑖𝑗
𝑢12(𝑟𝑖𝑗)

𝑗≠𝑖

 

But since 𝑟𝑖𝑗
2 = (𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
, 

𝐹𝑖,𝑥 = − ∑ (
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗
)

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

 

Thus, generalizing to all three coordinates and using vector notation for 𝐫𝑖𝑗 = 𝐫𝑗 − 𝐫𝑖: 

𝐅𝑖 = ∑ (
𝐫𝑖𝑗

𝑟𝑖𝑗
)

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

 

= ∑ (
𝐫𝑖𝑗

𝑟𝑖𝑗
) (

4𝜖

𝜎
) [−12 (

𝑟𝑖𝑗

𝜎
)

−13

+ 6 (
𝑟𝑖𝑗

𝜎
)

−7

]

𝑗≠𝑖

 

= ∑ 𝐫𝑖𝑗 (
𝜖

𝜎
) [−48 (

𝑟𝑖𝑗

𝜎
)

−14

+ 24 (
𝑟𝑖𝑗

𝜎
)

−8

]

𝑗≠𝑖

 

These equations form the basis of our pairwise interaction loop.  We notice that we will need to 

compute vectors, like 𝐫𝑖𝑗, as well as distances, like 𝑟𝑖𝑗.  In addition, a large portion of our 

computational overhead will involve raising quantities to powers. 

We must also consider the effects of periodic boundary conditions when computing 𝐫𝑖𝑗 and 𝑟𝑖𝑗. 

Each particle should see only those images of other particles that are closest to it.  We can 

accomplish this task by finding the minimum image distance between each pair of particles 𝐫𝑖𝑗
0 .  

For each component, we use the rounding function nint, which returns the nearest integer 

value: 

𝐫𝑖𝑗
0 = 𝐫𝑖𝑗 − 𝐿 nint(𝐫𝑖𝑗 𝐿⁄ ) 

Here 𝐿 is the length of the simulation box, and may be a vector for non-cubic boxes. Notice that 

this equation implies a separate operation for each component x, y, and z. 

Finally, we have to treat the truncation of our potential.  We will introduce a cutoff at a pairwise 

distance 𝑟𝑐, beyond which the value of the potential will be zero; typically 𝑟𝑐 = 2.5𝜎 or greater.  

We will also shift our entire potential up in energy by the value at 𝑟𝑐 so that the potential energy 

between any pair of particles continuously approaches zero at 𝑟𝑐.  Thus we have: 

𝑢(𝑟𝑖𝑗) = {
4𝜖 [(

𝑟𝑖𝑗

𝜎
)

−12

− (
𝑟𝑖𝑗

𝜎
)

−6

] − 4𝜖 [(
𝑟𝑐

𝜎
)

−12

− (
𝑟𝑐

𝜎
)

−6

] 𝑟𝑖𝑗 ≤ 𝑟𝑐

0 𝑟𝑖𝑗 > 𝑟𝑐
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In our simulation, we will work with dimensionless units such that values for positions/distances 

and energies are given in units of 𝜎 and 𝜖 respectively.  Thus, our pairwise potential function 

actually looks like: 

𝑢(𝑟𝑖𝑗) = {
4[𝑟𝑖𝑗

−12 − 𝑟𝑖𝑗
−6] − 4[𝑟𝑐

−12 − 𝑟𝑐
−6] 𝑟𝑖𝑗 ≤ 𝑟𝑐

0 𝑟𝑖𝑗 > 𝑟𝑐
 

We are now ready to write our subroutine.  A naïve implementation unoptimized for speed might 

look like: 

ljlibfortran.f90 

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom) 

    implicit none 

    integer, intent(in) :: Dim, NAtom 

    real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos 

    real(8), intent(in) :: L, rc 

    real(8), intent(out) :: PEnergy 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces 

    real(8), dimension(Dim) :: rij, Fij 

    real(8) :: d, Shift 

    integer :: i, j 

    PEnergy = 0. 

    Forces = 0. 

    Shift = -4. * (rc**(-12) – rc**(-6)) 

    do i = 0, NAtom - 1 

        do j = i + 1, NAtom - 1 

            rij = Pos(j,:) - Pos(i,:) 

            rij = rij - L * dnint(rij / L) 

            d = sqrt(sum(rij * rij)) 

            if (d > rc) then 

                cycle 

            end if 

            PEnergy = PEnergy + 4. * (d**(-12) – d**(-6)) + Shift 

            Fij = rij * (-48. * d**(-14) + 24. * d**(-12)) 

            Forces(i,:) = Forces(i,:) + Fij 

            Forces(j,:) = Forces(j,:) - Fij 

        enddo 

    enddo 

end subroutine 

Let’s consider the features of this subroutine.  The arguments Pos, L, and rc are all sent to the 

function using the intent(in) attribute and are not modified.  The float PEnergy is 

intent(out), meaning that it will be returned from our function.  The array Forces is 

intent(inout).  The reason that we did not use intent(out) for Forces is that this will 

ultimately imply creation of a new array each time the function is called, after we compile with 

f2py.  By declaring the array as intent(inout), we will be able to re-use an existing array for 

storing the forces, thus avoiding any performance hit that would accompany new array creation.  

Finally, the arguments Dim and NAtom give the sizes of various array dimensions. 
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Upon entering the subroutine, we zero the values of the potential energy and forces since we 

will add to these variables during the pairwise loop.  We also precalculate the values of any 

constants that will be used during the loop, such as the energy shift due to the pairwise potential 

truncation. 

In the pairwise loop, we compute the minimum image distance using the code 

rij = Pos(j,:) - Pos(i,:) 

rij = rij - L * dnint(rij / L) 

Notice that rij is a length-three array and thus these lines are actually implied loops over each 

element.  Here, dnint is the Fortran function returning the nearest integer of its argument as a 

type double or real(8) (the same as a Python float). 

The absolute distance is computed and we then determine whether or not a pair of atoms is 

beyond the distance cutoff: 

d = sqrt(sum(rij * rij)) 

if (d > rc) then 

    cycle 

end if 

The cycle statement in Fortran is equivalent to continue in Python, and it immediately 

causes the innermost loop to advance and return to the next iteration.  Here, we use it to skip 

ahead to the next atom pair if two atoms are beyond the cutoff. 

Notice the formatting of the if statement.  In general, Fortran conditional statements have the 

form: 

if (CONDITION) then 

    COMMANDS 

else if (CONDITION) then 

    COMMANDS 

else 

    COMMANDS 

end if 

The test condition can be any conditional expression built from comparison operators, 

parenthesis, and compound statements.  In Fortran, conditional comparisons are given by ==, <, 

>, <=, >= and /=.  Only the last of these, which signifies “not equals to”,  is different from Python.  

Moreover, in Fortran compound expressions can be written using .and., .or., and .not. 

which differ from Python only by the presence of a preceding and trailing period.  Similarly, the 

Boolean constants in Fortran are written as .true. and .false. 

After calculating the force, we add this vector to the force array for particle i and the negative 

vector for particle j in the loop: 
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Fij = rij * (-48. * d**(-14) + 24. * d**(-12)) 

Forces(i,:) = Forces(i,:) + Fij 

Forces(j,:) = Forces(j,:) – Fij 

Notice that, like Python, the power operator is written as **. 

In addition to the sqrt function used in this example, Fortran provides a large number of 

mathematical operations, almost all of which can be used to operate on entire arrays at a time.  

These functions include: 

mod, sin, cos, tan, cotan, asin, acos, atan, sinh, cosh, 

tanh, asinh, acosh, atanh, exp, log, log10, sqrt, 

ceiling, floor, nint, erf, erfc, huge, tiny, epsilon 

For many of these, the default versions of the functions return single-precision numbers.  To 

obtain double-precision return values, the equivalent of Python floats, there are versions of the 

functions that start with “d”, such as dnint from nint.  

In addition there are a number of functions that return information about arrays or perform 

array-specific mathematical operations: 

count, sum, product, minval, maxval, minloc, maxloc, 

matmul, transpose 

Many of these functions accept an optional argument axis=X that will perform the indicated 

operation over the specified axis only, returning an array of one smaller dimension.  Keep in mind 

that in Fortran the first axis is axis=1, as opposed to Python’s axis=0. 

Maximizing computational efficiency in Fortran code 
While the above code appears simple and straightforward, there are a number of ways in which 

it might be rewritten to require much fewer floating point calculations.   

First, we never need to find the absolute distance between two particles; rather, all computations 

can be rewritten in terms of the squared distance.  Thus we can remove the square root 

operation, which will result in significant time savings.   

Second, we can take much greater control over the exponentiation performed to specify exactly 

the number of multiplications.  In particular, the force calculation relies on terms that have 

overlap with the potential calculation.   

Third, we can copy the position of particle i into a temporary array to be used in the loop over j.  

This will save the effort of having to locate i’s position in memory each time we loop through j, 

as large multidimensional array access can be slow.   
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With these considerations, our optimized computation looks like: 

ljlibfortran.f90 

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom) 

    implicit none 

    integer, intent(in) :: Dim, NAtom 

    real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos 

    real(8), intent(in) :: L, rc 

    real(8), intent(out) :: PEnergy 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces 

    real(8), dimension(Dim) :: rij, Fij, Posi 

    real(8) :: d2, id2, id6, id12 

    real(8) :: rc2, Shift 

    integer :: i, j 

    PEnergy = 0. 

    Forces = 0. 

    Shift = -4. * (rc**(-12) – rc**(-6)) 

    rc2 = rc * rc 

    do i = 0, NAtom – 1 

        !store Pos(i,:) in a temporary array for faster access in j loop 

        Posi = Pos(i,:) 

        do j = i + 1, NAtom - 1 

            rij = Pos(j,:) - Posi 

            rij = rij - L * dnint(rij / L) 

            !compute only the squared distance and compare to squared cut 

            d2 = sum(rij * rij) 

            if (d2 > rc2) then 

                cycle 

            end if 

            id2 = 1. / d2            !inverse squared distance 

            id6 = id2 * id2 * id2    !inverse sixth distance 

            id12 = id6 * id6         !inverse twelvth distance 

            PEnergy = PEnergy + 4. * (id12 – id6) + Shift 

            Fij = rij * ((-48. * id12 + 24. * id6) * id2) 

            Forces(i,:) = Forces(i,:) + Fij 

            Forces(j,:) = Forces(j,:) - Fij 

        enddo 

    enddo 

end subroutine 

Some general considerations for writing fast routines are: 

• Store values that are used multiple times in temporary variables to avoid repeating 

calculations.  In the above example, 𝑟𝑖𝑗
−6 was used a number of times for each pair and 

stored as its own variable id6. 

• Break down large polynomial expressions so that fewer multiplications are needed.  For 

example, x**3+x**2+x+1 requires four multiplication and three addition operations.  

Alternatively, x*(x*(x+1)+1)+1 requires only two multiplication and three addition 

operations, but gives the same result.  In a similar manner, x**8 can be evaluated fastest 

by ((x**2)**2)**2. 
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• If expensive mathematical operations like log, exp, or sqrt can be avoided, rewrite your 

code to do so. 

• If the same elements of a large array are to be accessed many times in succession during 

a loop, copy these values into a temporary variable first.  Fortran will be able to read and 

write values in variables or smaller, single-dimensional arrays much faster than in large 

arrays because memory access can be slow and small variables can be optimized to sit in 

faster parts of memory. 

• In Fortran, arrays are traversed most efficiently in memory if the leftmost array index 

varies the fastest.  For example, a double loop over Pos(i,j) is the fastest if i is the 

inner loop and j the outer.  Similarly, expressions like Pos(:,j) are faster than 

Pos(j,:). Unfortunately, writing code in this way is not always possible given the way 

in which it is natural to define arrays in Python and how Python passes variables to 

Fortran.  In the above example, we were not able to make the inner index vary fastest 

because Pos was passed with the (x,y,z) coordinates in the second index, which we need 

to access all at one time.  However, if given the option, choose loops that vary the fastest 

over the leftmost array indices. 

Multiple functions in each Fortran file 
We can put multiple subroutines inside the same Fortran file.  Generally, it is a good idea to group 

functions together in files by their purpose and level of generality.  In other words, keep functions 

specific to the potential energy function in a separate Fortran file from those which perform 

generic geometric manipulations (e.g., rotation of a rigid body).  When compiled for Python, all 

of the subroutines in a given Fortran file will appear as functions in the same imported module. 

Here is the example from above extended with a subroutine that advances the positions and 

velocities of each atom using the velocity Verlet algorithm: 

ljlibfortran.f90 

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom) 

    implicit none 

    integer, intent(in) :: Dim, NAtom 

    real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos 

    real(8), intent(in) :: L, rc 

    real(8), intent(out) :: PEnergy 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces 

    real(8), dimension(Dim) :: rij, Fij, Posi 

    real(8) :: d2, id2, id6, id12 

    real(8) :: rc2, Shift 

    integer :: i, j 

    PEnergy = 0. 

    Forces = 0. 

    Shift = -4. * (rc**(-12) – rc**(-6)) 
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    rc2 = rc * rc 

    do i = 0, NAtom – 1 

        !store Pos(i,:) in a temporary array for faster access in j loop 

        Posi = Pos(i,:) 

        do j = i + 1, NAtom - 1 

            rij = Pos(j,:) - Posi 

            rij = rij - L * dnint(rij / L) 

            !compute only the squared distance and compare to squared cut 

            d2 = sum(rij * rij) 

            if (d2 > rc2) then 

                cycle 

            end if 

            id2 = 1. / d2            !inverse squared distance 

            id6 = id2 * id2 * id2    !inverse sixth distance 

            id12 = id6 * id6         !inverse twelvth distance 

            PEnergy = PEnergy + 4. * (id12 – id6) + Shift 

            Fij = rij * ((-48. * id12 + 24. * id6) * id2) 

            Forces(i,:) = Forces(i,:) + Fij 

            Forces(j,:) = Forces(j,:) - Fij 

        enddo 

    enddo 

end subroutine 

 

subroutine VVIntegrate(Pos, Vel, Accel, L, CutSq, dt, KEnergy, PEnergy, Dim, NAtom) 

    implicit none 

    integer, intent(in) :: Dim, NAtom 

    real(8), intent(in) :: L, CutSq, dt 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos, Vel, Accel 

    real(8), intent(out) :: KEnergy, PEnergy 

    external :: EnergyForces 

    Pos = Pos + dt * Vel + 0.5 * dt*dt * Accel 

    Vel = Vel + 0.5 * dt * Accel 

    call EnergyForces(Pos, L, CutSq, PEnergy, Accel, Dim, NAtom) 

    Vel = Vel + 0.5 * dt * Accel 

    KEnergy = 0.5 * sum(Vel*Vel) 

end subroutine 

Notice that the VVIntegrate function calls the EnergyForces function within it.  When a 

Fortran function calls another function, we must also declare the latter using the external 

keyword as we wrote above.  This tells the compiler that the function we are calling lies 

somewhere else in the code we wrote.  In addition, called subroutines must be preceded with 

the keyword call. 

Compiling  and debugging 
Once we have written our Fortran source code, we must compile it.  Ultimately this will be done 

automatically by f2py in the creation of a Python module from the .f90 file.  However, to debug 

our code, it is often useful to first try to compile the Fortran source directly.  To compile our code 

above, we write at the command line: 

c:\> gfortran -c ljlibfortran.f90 

If there were no errors in our program, gfortran will return quietly with no output and a file 

ljlib3.o will have been created, an object file that can be subsequently linked into an executable 
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file.  We will have no use for the .o file here, since we are only concerned with identifying errors 

in our code at this point, and thus it is safe to delete it. 

If gfortran finds a problem with our code, it will return an error message.  For example, if we used 

the assignment k=1 in our code, but forgot to explicitly define the type of k, gfortran would 

return: 

ljlibfortran.f90:50.5: 

 

    k = 1 

     1 

Error: Symbol 'k' at (1) has no IMPLICIT type 

In the first line, we are given the line (50) and column (5) numbers where it found the error, as 

well as the specific error message.  The number 1 is used underneath the offending line to show 

where the error occurred. 

Sometimes our program compiles just fine, but we still experience numerical problems in running 

our code.  At this point, it often becomes useful to track values of variables throughout the 

program execution.  In Python, we could place print statements throughout the code to 

periodically report on variable values.  If we also need to see the values of variables during called 

Fortran routines, we can similarly place print statements within our Fortran code during test 

production.  In Fortran a print statement has the form: 

print *, var1, var2, var3 

Here, one must always include the “*,” indicator after the Fortran print statement to tell it that 

you want to send the values to the terminal (screen), and not to a file or attached device. 

There are also many Fortran source code editors with a graphical user interface that color-code 

statements and functions for ease of viewing, and that will often check for simple errors.  The 

Spyder editor included with the Anaconda Distribution is one such editor. 

Preparing code for f2py 
Generally, if we write Fortran code that strongly types and specifies intents for all variables, then 

there is very little that we need to do before using f2py to convert it into a Python-importable 

module.  However, for array variables with the intent(inout) attribute, we typically need 

to add a small directive that tells f2py how we want to deal with this particular kind of variable.  

f2py directives are small comments at the beginning of lines (no preceding spaces) that start as 

“!f2py”.  For intent(inout) variables, we simply add 

!f2py intent(in,out) :: VAR  
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to the line after an argument declaration statement. 

Consider the EnergyForces function.  Here, we need to place an f2py directive immediately 

after the type declaration for the Forces variable: 

… 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces 

!f2py intent(in,out) :: Forces 

… 

Since our directive begins with the Fortran comment character “!”, it will not affect compilation 

by Fortran during debugging.  However, the addition of intent(in,out) :: Forces will 

tell f2py that we want the Python version of our Fortran function to treat the array Forces as 

an argument and also as a return value as a part of the return tuple. 

We need to similarly modify the code for VVIntegrate: 

… 

    real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos, Vel, Accel 

!f2py intent(in,out) :: Pos, Vel, Accel 

… 

Running f2py 
Once we have written and debugged our Fortran source code, we are ready to compile it into a 

Python module using the f2py utility.  If your environment variables are set up correctly, you 

should be able to run f2py directly from the command line or terminal.  On a Windows system, 

start an Anaconda Prompt to open a terminal. 

Running f2py without any arguments prints out a long help file: 

c:\> f2py.py 
Usage: 

 

1) To construct extension module sources: 

 

      f2py [<options>] <fortran files> [[[only:]||[skip:]] \ 

                                        <fortran functions> ] \ 

                                       [: <fortran files> ...] 

 

2) To compile fortran files and build extension modules: 

 

      f2py -c [<options>, <build_flib options>, <extra options>] <fortran files> 

 

3) To generate signature files: 

 

      f2py -h <filename.pyf> ...< same options as in (1) > 

 

Description: This program generates a Python C/API file (<modulename>module.c) 

             that contains wrappers for given fortran functions so that they 

             can be called from Python. With the -c option the corresponding 

             extension modules are built. 



© 2025 M. Scott Shell 22/26 last modified 9/26/2025 

… 

f2py is a powerful utility that enables a lot of control over how modules are compiled.  Here we 

will only describe a specific subset of its abilities.  To compile our code into a module, we use a 

command of the following form: 

f2py.py –c –m MODULENAME SOURCE.f90  

Here, MODULENAME is the name we want for our module after it is compiled.  SOURCE.f90 is 

the name of the file containing the Fortran source code.  The –c and –m flags indicate compilation 

and the name specification, respectively.   

Sometimes, particularly on Windows platforms, we need to explicitly specify the compilers to 

make the command work: 

f2py.py –c –m MODULENAME SOURCE.f90 --fcompiler=gnu95 --compiler=mingw32 

The option --fcompiler=gnu95 tells f2py to use the GFortran compiler that we downloaded 

and installed earlier.  There are other Fortran compilers that will work with f2py that could be 

specified here.  To see what compilers are present and recognized on your system, use the 

following command:  

c:\> f2py.py –c --help-fcompiler 
Fortran compilers found: 

  --fcompiler=compaqv  DIGITAL or Compaq Visual Fortran Compiler (6.6) 

  --fcompiler=gnu95    GNU Fortran 95 compiler (4.4.0) 

Compilers available for this platform, but not found: 

  --fcompiler=absoft   Absoft Corp Fortran Compiler 

  --fcompiler=g95      G95 Fortran Compiler 

  --fcompiler=gnu      GNU Fortran 77 compiler 

  --fcompiler=intelev  Intel Visual Fortran Compiler for Itanium apps 

  --fcompiler=intelv   Intel Visual Fortran Compiler for 32-bit apps 

Compilers not available on this platform: 

  --fcompiler=compaq   Compaq Fortran Compiler 

  --fcompiler=hpux     HP Fortran 90 Compiler 

  --fcompiler=ibm      IBM XL Fortran Compiler 

  --fcompiler=intel    Intel Fortran Compiler for 32-bit apps 

  --fcompiler=intele   Intel Fortran Compiler for Itanium apps 

  --fcompiler=intelem  Intel Fortran Compiler for EM64T-based apps 

  --fcompiler=lahey    Lahey/Fujitsu Fortran 95 Compiler 

  --fcompiler=mips     MIPSpro Fortran Compiler 

  --fcompiler=nag      NAGWare Fortran 95 Compiler 

  --fcompiler=none     Fake Fortran compiler 

  --fcompiler=pg       Portland Group Fortran Compiler 

  --fcompiler=sun      Sun or Forte Fortran 95 Compiler 

  --fcompiler=vast     Pacific-Sierra Research Fortran 90 Compiler 

For compiler details, run 'config_fc --verbose' setup command. 

Part of the f2py process involves the automated writing and compilation of C wrapper code 

around the Fortran routines.  The option --compiler=mingw32 tells f2py to use the MinGW 

C compiler that comes with gfortran.  This compiler is specific to the Windows system.  On other 
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systems, this option might be omitted to use the default C compiler, or another C compiler could 

be specified directly (e.g., --compiler=gcc). 

Running f2py for our Lennard-Jones example looks something like the following: 

c:\>f2py.py -c -m ljlibfortran ljlibfortran.f90  

Cannot use distutils backend with Python>=3.12, using meson backend instead. 

Using meson backend 

Will pass --lower to f2py 

See https://numpy.org/doc/stable/f2py/buildtools/meson.html 

Reading fortran codes... 

        Reading file 'ljlibfortran.f90' (format:free) 

Post-processing... 

        Block: ljlibfortran 

                        Block: calcenergyforces 

                        Block: vvintegrate 

Applying post-processing hooks... 

  character_backward_compatibility_hook 

Post-processing (stage 2)... 

Building modules... 

    Building module "ljlibfortran"... 

    Generating possibly empty wrappers" 

    Maybe empty "ljlibfortran-f2pywrappers.f" 

        Constructing wrapper function "calcenergyforces"... 

          penergy,forces = calcenergyforces(pos,l,rc,forces,[dim,natom]) 

    Generating possibly empty wrappers" 

    Maybe empty "ljlibfortran-f2pywrappers.f" 

        Constructing wrapper function "vvintegrate"... 

          pos,vel,accel,kenergy,penergy = vvintegrate(pos,vel,accel,l,cutsq,dt,[dim,natom]) 

    Wrote C/API module "ljlibfortran" to file ".\ljlibfortranmodule.c" 

The Meson build system 

Version: 1.6.0 

Source dir: C:\Users\mscot\AppData\Local\Temp\tmpfdwd5z9g 

Build dir: C:\Users\mscot\AppData\Local\Temp\tmpfdwd5z9g\bbdir 

Build type: native build 

Project name: ljlibfortran 

Project version: 0.1 

Fortran compiler for the host machine: gfortran (gcc 15.1.0 "GNU Fortran (conda-forge gcc 15.1.0-

3) 15.1.0") 

Fortran linker for the host machine: gfortran ld.bfd 2.44 

C compiler for the host machine: cc (gcc 15.1.0 "cc (conda-forge gcc 15.1.0-3) 15.1.0") 

C linker for the host machine: cc ld.bfd 2.44 

Host machine cpu family: x86_64 

Host machine cpu: x86_64 

Program C:\Users\mscot\anaconda3\python.exe found: YES (C:\Users\mscot\anaconda3\python.exe) 

Run-time dependency python found: YES 3.13 

Library quadmath found: YES 

Build targets in project: 1 

 

Found ninja-1.12.1 at C:\Users\mscot\anaconda3\Library\bin\ninja.EXE 

INFO: autodetecting backend as ninja 

INFO: calculating backend command to run: C:\Users\mscot\anaconda3\Library\bin\ninja.EXE -C 

C:/Users/mscot/AppData/Local/Temp/tmpfdwd5z9g/bbdir 

ninja: Entering directory `C:/Users/mscot/AppData/Local/Temp/tmpfdwd5z9g/bbdir' 

[6/6] Linking target ljlibfortran.cp313-win_amd64.pyd 

A fair amount of text is outputted when running f2py.  You will know that your code has compiled 

successfully when (1) there are no signs of errors, and (2) a compiled module file now exists.  On 

Windows, your module file will end in .pyd, while on Linux it will typically end in .so.  The name 

of your file is that which you specified in the MODULENAME option. 

The f2py utility will generate automatically all of the code necessary to pass NumPy arrays in 

between Python and your compiled Fortran routines.  In particular, it makes sure that function 
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arguments obey the right types and dimensioning.  As a part of this effort to make sure Python 

arrays are Fortran-friendly, NumPy can sometimes make a copy of an input array to send to the 

compiled function.   

Sometimes it is convenient to know when copies are made of arrays sent to Fortran routines, 

rather than the original Python arrays themselves, since such copying can create a performance 

hit.  One can compile f2py with the additional option -DF2PY_REPORT_ON_ARRAY_COPY=1 to 

have Fortran-compiled routines print out messages in real-time each time such a copying event 

occurs.  This is useful for debugging / optimizing code, but final production code should not use 

this option. 

Help with f2py 
There are a number of online resources for reading about additional options with and for 

troubleshooting the f2py utility.  The main website can be found at: 

https://numpy.org/doc/stable/f2py/ 

Importing and using f2py-compiled modules in Python 
Once we have compiled our Fortran source code into a module using f2py, it is as easy to import 

as any other module: 

>>> import ljlibfortran 

f2py embeds information about the functions it compiles into docstrings.  To see these 

docstrings, use the help function: 

>>> help(ljlibfortran) 

Help on module ljlibfortran: 

 

NAME 

    ljlibfortran 

 

DESCRIPTION 

    This module 'ljlibfortran' is auto-generated with f2py (version:2.2.5). 

    Functions: 

        penergy,forces = calcenergyforces(pos,l,rc,forces,dim=shape(pos, 1),natom=shape(pos, 

0)) 

        pos,vel,accel,kenergy,penergy = vvintegrate(pos,vel,accel,l,cutsq,dt,dim=shape(pos, 

1),natom=shape(pos, 0)) 

    . 

 

DATA 

    __f2py_numpy_version__ = '2.2.5' 

    calcenergyforces = <fortran function calcenergyforces> 

    vvintegrate = <fortran function vvintegrate> 

 

VERSION 

    2.2.5 

 

FILE 



© 2025 M. Scott Shell 25/26 last modified 9/26/2025 

    c:\users\mscot\onedrive\courses\che210d\2025\scripts\python\ljlibfortran.cp313-

win_amd64.pyd 

This summary tells us that the module contains two functions, energyforces and 

vvintegrate.  Notice that f2py converts all Fortran variable and function names to lowercase 

by default. 

In addition to their names, the docstring tells us the format of a call to each of the functions.  We 

can get more detailed information by examining the docstrings of the individual functions.  We 

need to actually print out the docstring to see the details: 

>>> print(ljlibfortran.calcenergyforces.__doc__) 

penergy,forces = calcenergyforces(pos,l,rc,forces,[dim,natom]) 

 

Wrapper for ``calcenergyforces``. 

 

Parameters 

---------- 

pos : input rank-2 array('d') with bounds (natom,dim) 

l : input float 

rc : input float 

forces : input rank-2 array('d') with bounds (natom,dim) 

 

Other Parameters 

---------------- 

dim : input int, optional 

    Default: shape(pos, 1) 

natom : input int, optional 

    Default: shape(pos, 0) 

 

Returns 

------- 

penergy : float 

forces : rank-2 array('d') with bounds (natom,dim) 

Here, we are told that there are four arguments we must provide: pos, l, rc, and forces.  

These arguments correspond to any for which we specified the intent(in) or 

intent(inout) attributes.  However, we do not need to specify the dimension variables dim 

and natom, as these will be taken automatically from the shape of the argument pos.   

The docstring also tells us that the function will return two arguments, penergy and forces.  

These correspond to any Fortran arguments for which we specified intent(out) or 

intent(inout).  Thus a call from Python to the energyforces routine would look like: 

>>> penergy, forces = ljlib.energyforces(pos, l, rc, forces) 

where we would have needed to supply the vector of positions, box length, cutoff, and force 

array.  If we had specified intent(out) for forces, it would not have appeared as an 

argument and Python instead would have created a new force array with each function call. 
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Similarly, we can examine the docstring of the vvintegrate function: 

>>> print(ljlibfortran.vvintegrate.__doc__) 

pos,vel,accel,kenergy,penergy = 

vvintegrate(pos,vel,accel,l,cutsq,dt,[dim,natom]) 

 

Wrapper for ``vvintegrate``. 

 

Parameters 

---------- 

pos : input rank-2 array('d') with bounds (natom,dim) 

vel : input rank-2 array('d') with bounds (natom,dim) 

accel : input rank-2 array('d') with bounds (natom,dim) 

l : input float 

cutsq : input float 

dt : input float 

 

Other Parameters 

---------------- 

dim : input int, optional 

    Default: shape(pos, 1) 

natom : input int, optional 

    Default: shape(pos, 0) 

 

Returns 

------- 

pos : rank-2 array('d') with bounds (natom,dim) 

vel : rank-2 array('d') with bounds (natom,dim) 

accel : rank-2 array('d') with bounds (natom,dim) 

kenergy : float 

penergy : float 

A call to vvintegrate would therefore look like: 

>>> pos, vel, accel, kenergy, penergy = ljlib.vvintegrate(pos, vel, accel, 

...                                                       l, cutsq, dt) 

Note that f2py automatically makes the conversions / equivalencies of Fortran real(8) and 

Python float types. 

And that’s it!  You are now ready to use your Fortran routines with Python. 

Learning more about Fortran 
It is beyond the scope of this document to cover the entire Fortran language.  However, a number 

of excellent tutorials for Fortran programming are available online, and many digital assistants 

(like ChatGPT) are able to produce drafts of Fortran code.  Keep in mind, however, that you 

probably only need a small subset of Fortran knowledge if your goal is to simply write fast 

numerical routines that are compiled for Python, where Python then does more of the complex 

programming work and organization. 


