
© 2025 M. Scott Shell 1/26 last modified 9/26/2025

Writing fast routines for Python

Table of contents
Table of contents .. 1

Overview ... 2

Installation .. 4

Using Numba to accelerate Python calculations with minimal effort .. 4

Fortran programming ... 7

A Fortran case study ... 12

Maximizing computational efficiency in Fortran code ... 16

Multiple functions in each Fortran file ... 18

Compiling and debugging .. 19

Preparing code for f2py .. 20

Running f2py ... 21

Help with f2py ... 24

Importing and using f2py-compiled modules in Python .. 24

Learning more about Fortran ... 26

© 2025 M. Scott Shell 2/26 last modified 9/26/2025

Overview
Python, unfortunately, does not always come pre-equipped with the speed necessary to perform

intense numerical computations in user-defined routines. Ultimately, this is due to Python’s

flexibility as a programming language. Very efficient programs are often inflexible: every variable

is typed as a specific numeric format and all arrays have exactly specified dimensions. Such

inflexibility enables programs to assign spots in memory to each variable that can be accessed

efficiently, and it eliminates the need to check the type of each variable before performing an

operation on it.

We will discuss three ways that we can write computationally efficient Python code. The first is

to make good use of numpy and scipy routines whenever we can, rather than writing our own

code. The functions and classes in these modules reference fast, compiled code behind the scene

that is highly optimized and takes advantage of modern hardware architectures. For example,

we could compute pairwise distances between a particle i and all other particles j using the

following Python code:

def compute_pair_distances1(i, Pos):

 N, Dim = Pos.shape

 dist = np.zeros((N,), dtype=float)

 for j in range(N):

 if i==j: continue

 dist[j] = np.sqrt(np.sum((Pos[i] - Pos[j])**2))

 return dist

Or, we could use numpy routines without an explicit loop:

def compute_pair_distances2(i, Pos):

 return np.sqrt(np.sum((Pos[:,:] - Pos[i,:])**2, axis=1))

For a 1000-particle system, the second function is over 150x faster than the first.

Still, it isn’t always possible to make use of built-in numpy routines. Fortunately, we can combine

Python code with compiled code and still maintain the flexibility and coding ease that Python

provides. We can do this because typically our simulations are dominated by a few bottleneck

steps, while the remainder of the code we write is insignificant in terms of computational

demands. Things like outputting text to a display, writing data to files, setting up the simulation,

keeping track of energy and other averages, and even modifying the simulation while its running

(e.g., changing the box size or adding/deleting a particle) are actually not that computationally

intensive. On the other hand, computing the total energies and forces on each atom in a pairwise

loop is quite expensive. This is an order N2 operation, where the number of atoms N typically

varies from 100 to 10000.

© 2025 M. Scott Shell 3/26 last modified 9/26/2025

The second approach to fast code is to use a just-in-time Python compiler for these kind of

bottleneck routines. A number of such packages exist for this purpose for Python, including

Numba and Cython. The former is far much easier to use, albeit less amenable to detailed

customization, and so we will only discuss it here. Numba essentially takes Python functions, and

translates them into much faster machine code that is compiled on the fly.

The third and typically most efficient solution is to write the expensive steps in a fast language

like Fortran and to keep everything else in Python. Fortunately, this is a very easy task. Numpy

provides simple routines for compiling fast code written in Fortran into modules that can be

imported into Python and used directly. Functions in that module can be called as if they were

written in Python, but with the performance of compiled code.

In compiling Fortran code for Python, we will use a specific tool called f2py that completely

automates the compilation of Fortran code into Python modules. The reason we will use this

instead of other approaches is that: (1) f2py is relatively stable, very simple to use, and comes

built-in with NumPy; (2) Fortran, albeit a somewhat archaic and inflexible language, is simple and

actually one of the fastest compiled languages; and (3) a large amount of legacy code in the

scientific community is written in Fortran and thus knowing some aspects of it helps understand

and incorporate this code into your own.

The following benchmarks give rough speed comparisons for Exercise 2 in the course, as a

function of number of atoms (lower values are better). Here, “broadcast” means the use of

numpy functions to compute distances in the j-loop. Courtesy of Jacob Monroe:

© 2025 M. Scott Shell 4/26 last modified 9/26/2025

Installation
Everything you will need is open source or freely licensed. Moreover, all of the utilities discussed

below are cross-platform. If you have installed the Anaconda Distribution, then you should have

most of the necessary files available, including Numba. To use the Fortran routines, you will need

to add a Fortran compiler. See the course syllabus for details.

Using Numba to accelerate Python calculations with minimal effort
Numba is a just-in-time compiler for Python, which means that it can translate Python into

machine code on-the-fly for designated functions, which then run significantly faster. The

compilation step adds some overhead the first time that a function is called, but this only happens

once during the course of the program. This means that expensive routines called many times,

like the calculation of pairwise energies and forces, can be dramatically accelerated.

Let’s consider the Lennard-Jones system. We could write the following (unoptimized) Python

code to compute the energy and forces:

def calcenergyforces(Pos, L, rc, Force):

 NAtom, Dim = Pos.shape

 Shift = -4. * (rc**(-12) - rc**(-6))

 rc2 = rc * rc

 iL = 1./L

 PEnergy = 0.

 Force.fill(0.)

 for i in range(NAtom):

 Posi = Pos[i,:]

 for j in range(0,i):

 rij = Pos[j,:] - Posi

 rij = rij - L * np.rint(rij * iL)

 d2 = np.sum(rij**2)

 if d2 > rc2:

 continue

 id2 = d2**(-1) #inverse squared distance

 id6 = id2 * id2 * id2 #inverse sixth distance

 id12 = id6 * id6 #inverse twelvth distance

 PEnergy += 4. * (id12 - id6) + Shift

 Fij = rij * ((-48. * id12 + 24. * id6) * id2)

 Force[i,:] += Fij

 Force[j,:] -= Fij

 return PEnergy, Force

Let’s consider a test where we use this loop to run 100,000 MD steps with a 108-particle system;

the timing results are machine-specific, but it will illustrate the speedups. Running as pure

Python, the test requires 1.06 hours – not very fast at all.

Now let’s use Numba to compile this routine. We first import using

from numba import njit

© 2025 M. Scott Shell 5/26 last modified 9/26/2025

and then we add a decorator to the top of our function:

@njit

def calcenergyforces(Pos, L, rc, Force):

 NAtom, Dim = Pos.shape

 Shift = -4. * (rc**(-12) - rc**(-6))

 rc2 = rc * rc

 iL = 1./L

 PEnergy = 0.

 Force.fill(0.)

 for i in range(NAtom):

 Posi = Pos[i,:]

 for j in range(0,i):

 rij = Pos[j,:] - Posi

 rij = rij - L * np.rint(rij * iL)

 d2 = np.sum(rij**2)

 if d2 > rc2:

 continue

 id2 = d2**(-1) #inverse squared distance

 id6 = id2 * id2 * id2 #inverse sixth distance

 id12 = id6 * id6 #inverse twelvth distance

 PEnergy += 4. * (id12 - id6) + Shift

 Fij = rij * ((-48. * id12 + 24. * id6) * id2)

 Force[i,:] += Fij

 Force[j,:] -= Fij

 return PEnergy, Force

A decorator is an instruction to Python to process a function in a special way. Here, njit signals

to Numba to use the “no python” mode of its just-in-time compiler; “no python” means that

Numba will compile to the fastest code possible by omitting bindings to the Python interpreter.

Running our test, we find that there is a small delay at the start of the program, when the routine

is first compiled. But then our 100,000 MD steps require 129 seconds, a 29x speedup relative to

pure Python!

We can make Numba-compiled routines even faster if we make use of Numpy array functions to

accomplish part of the calculations. Notice that we calculate the squared distance between all

i,j pairs. Let’s rewrite the code to use Numpy functions to do this.

@njit

def calcenergyforces(Pos, L, rc, Force):

 NAtom, Dim = Pos.shape

 Shift = -4. * (rc**(-12) - rc**(-6))

 rc2 = rc * rc

 iL = 1./L

 PEnergy = 0.

 Force.fill(0.)

 for i in range(NAtom):

 #here, testing for i < j

 #distance vectors

 rijarr = Pos[:i,:] - Pos[i,:]

 #minimum image

© 2025 M. Scott Shell 6/26 last modified 9/26/2025

 rijarr = rijarr - L * np.rint(rijarr * iL)

 #squared distance

 d2arr = np.sum(rijarr*rijarr, axis=1)

 for j in range(0,i):

 d2 = d2arr[j]

 if d2 > rc2:

 continue

 rij = rijarr[j]

 id2 = d2**(-1) #inverse squared distance

 id6 = id2 * id2 * id2 #inverse sixth distance

 id12 = id6 * id6 #inverse twelvth distance

 PEnergy += 4. * (id12 - id6) + Shift

 Fij = rij * ((-48. * id12 + 24. * id6) * id2)

 Force[i,:] += Fij

 Force[j,:] -= Fij

 return PEnergy, Force

Notice that we use Numpy array operations to compute all of the pair distance vectors from a

particle i to all j < i, then the minimum image distances, and finally the squared distances.

Now our test code requires 53.9 seconds, a 70x speedup relative to pure Python and a 2.4x

speedup relative to the first Numba-compiled routine. In general, we should try to use Numpy

array operations within Numba-compiled code whenever we can, since these are highly

optimized and will result in the fastest calculations.

For comparison, if we had written the calcenergyforces routine in Fortran and compiled it

for Python using f2py – as we discuss below – the same test would take only 16.9 seconds, a 224x

speedup from pure Python and faster than the Numba-compiled routines. However, this requires

more effort, notably programming in a language other than Python and pre-compiling a module.

There is one more way to accelerate Numba-optimized routines, and that involves parallelizing

them so that Numba can take advantage of modern CPU hardware that can perform multiple

calculations simultaneously. This will increase the load on our computational resources, but it

can also produce substantial increases in speed. We modify our code as follows:

from numba import njit, prange

@njit(parallel=True)

def calcenergyforces(Pos, L, rc, Force):

 NAtom, Dim = Pos.shape

 Shift = -4. * (rc**(-12) - rc**(-6))

 rc2 = rc * rc

 iL = 1./L

 PEnergy = 0.

 Force.fill(0.)

 for i in prange(NAtom):

 #here, testing for i < j

 #distance vectors

 rijarr = Pos[:i,:] - Pos[i,:]

 #minimum image

© 2025 M. Scott Shell 7/26 last modified 9/26/2025

 rijarr = rijarr - L * np.rint(rijarr * iL)

 #squared distance

 d2arr = np.sum(rijarr*rijarr, axis=1)

 for j in range(0,i):

 d2 = d2arr[j]

 if d2 > rc2:

 continue

 rij = rijarr[j]

 id2 = d2**(-1) #inverse squared distance

 id6 = id2 * id2 * id2 #inverse sixth distance

 id12 = id6 * id6 #inverse twelvth distance

 PEnergy += 4. * (id12 - id6) + Shift

 Fij = rij * ((-48. * id12 + 24. * id6) * id2)

 Force[i,:] += Fij

 Force[j,:] -= Fij

 return PEnergy, Force

The function prange acts like range, but allows Numba to take that particular loop and distribute

it across multiple threads simultaneously. Note that this only works if the loop does not have

cross iteration dependencies, e.g., each pass through the loop is independent of any other. Here,

we parallelize the outer loop over particle i.

Now, our test case requires just 14.4 seconds – much faster! This even beats the Fortran routine,

although the comparison isn’t fair because the Fortran version below hasn’t been parallelized.

It’s also important to note that the parallel Numba version uses around 90% of our CPU when it

is running, versus 10-20% for the non-parallel one.

Fortran programming
Fortran offers another way to build very fast Python modules and functions, although it requires

knowledge of the Fortran programming language. Before we begin compiling Fortran routines

for Python, we need some background on programming in Fortran. Fortunately, we only need

to know the basics of the Fortran language since we will only be writing numerical functions and

not coding entire Fortran projects.

We will be using the Fortran 90 standard. There are older versions of Fortran, notably Fortran

77, that are much more difficult to read and use. Fortran 90 files all end in the extension .f90 and

we can put multiple functions in a single .f90 file—these functions will eventually each appear as

separate member functions of the Python module we make from this Fortran file.

Fortran 90 code is actually fairly straightforward to develop, but it is important to keep in mind

some main differences from Python:

• Fortran is not case-sensitive. That is, the names atom, Atom, and ATOM all designate

the same variable.

© 2025 M. Scott Shell 8/26 last modified 9/26/2025

• The comment character is an explanation point, “!”, instead of the pound sign in Python.

• Spacing is unimportant in Fortran. Instead of using spacing to show the commands

included with a subroutine or loop, Fortran uses beginning and closing statements. For

example, subroutines begin with subroutine MyFunction(….) and end with end

subroutine.

• Fortran does make a distinction between functions that return single variable values and

subroutines that do not return anything but that can modify the contents of variables sent

to it. However, in writing code to be compiled for Python, we will always write

subroutines and therefore will not need to worry about functions. We will often use the

nomenclature "function" interchangeably with subroutine.

• Fortran does not have name binding. Instead, if you change the value of a variable passed

to a subroutine via the assignment operation (=), the value of that variable is changed for

good. Fortunately, Fortran lets us declare whether or not variables can be modified in

functions, and a compile error will be thrown if we violate our own rules.

• Every variable should be typed. That means that, at the beginning of a function, we should

specify the type and size of every variable passed to it, passed from it, and created during

it. This is very important to the speed of routines. More on this later.

• Fortran has no list, dictionary, or tuple capabilities. It only has arrays. When we iterate

over an array using a loop, we must always create an integer variable that is the loop

index. Moreover, Fortran loops are inclusive of the upper bound.

• Fortran uses parenthesis () rather than brackets [] to access array elements.

• Fortran array indices start at 1 by default, rather than at 0 as in Python. This can be very

confusing, and we will always explicitly override this behavior so that arrays start at 0.

Let’s start with a specific example to get us going. We will write a function that takes in a (N,3)

array of N atom positions, computes the centroid (the average position), and makes this point

the origin by centering the original array. In Python / NumPy, we could accomplish this task

using a single line:

Pos = Pos – Pos.mean(axis=0)

An equivalent Fortran subroutine would look the following:

subroutine CenterPos(Pos, Dim, NAtom)

 implicit none

 integer, intent(in) :: Dim, NAtom

© 2025 M. Scott Shell 9/26 last modified 9/26/2025

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos

 real(8), dimension(0:Dim-1) :: PosAvg

 integer :: i, j

 PosAvg = sum(Pos, 1) / dble(NAtom)

 do i = 0, NAtom - 1

 do j = 0, Dim - 1

 Pos(i,j) = Pos(i,j) - PosAvg(j)

 end do

 end do

end subroutine

In the above example, we defined a subroutine called CenterPos that takes three arguments:

the array Pos, the dimensionality Dim, and the number of atoms NAtom. The subroutine is

entirely contained within the initial subroutine and end subroutine statements.

Immediately after the declaration statement, we use the phrase implicit none. It is a good

habit always to include this statement immediately after the declaration. It tells the Fortran

compiler to raise an error if we do not define a variable that we use. Defining variables is critical

to the speed of our code.

Next we have a series of statements that define all variables, including those that are sent to the

function. These statements have the following forms. For arguments to our function that are

single values, we use:

type TYPE, intent(INTENT) :: NAME

For array arguments, we use:

type TYPE, intent(INTENT), dimension(DIMENSIONS) :: NAME

Finally, for other variables that we use within the function, but that are not arguments/inputs or

outputs, we use:

type TYPE :: NAME

or, for arrays,

type TYPE, dimension(DIMENSIONS) :: NAME

Here, TYPE is a specifier that tells the function the numeric format of a variable. The Fortran

equivalents of Python types are:

Python / NumPy Fortran
float real(8) (also called double)
int integer

bool logical

© 2025 M. Scott Shell 10/26 last modified 9/26/2025

For arguments, we use the INTENT option to tell Python what we are going to do with a variable.

There are three such options,

intent meaning
in The variable is an input to the subroutine only. Its value

must not be changed during the course of the subroutine.
out The variable is an output from the subroutine only. Its

input value is irrelevant. We must assign this variable a
value before exiting the subroutine.

inout The subroutine both uses and modifies the data in the
variable. Thus, the initial value is sent and we ultimately
make modifications base on it.

For array arguments, we also specify the DIMENSIONS of the arrays. For multiple dimensions,

we use comma-separated lists. The colon “:” character indicates the range of the dimension.

Unlike Python, however, the upper bound is inclusive. The statement

real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos

says that the first axis of Pos varies from 0 to and including NAtom-1, and the second axis from

0 to and including Dim-1. We could have also written this statement as

real(8), intent(inout), dimension(NAtom, Dim) :: Pos

In which case the lower bound of each dimension would have been 1 rather than 0. Instead, we

explicitly override this behavior to keep Fortran array indexing the same as that in Python, for

clarity in our programming.

Notice that the dimensions are variables that we must declare in and pass to the subroutine when

it is called. This, again, is a step that helps achieve faster code. Eventually f2py will automatically

pass these dimensions when the Fortran code is called as a Python module, so that these

dimensional arguments are hidden. For that reason, one should always put any arguments that

specify dimensions at the end of the argument list. Notice that all of the dimension variables

are at the end of our subroutine declaration:

subroutine CenterPos(Pos, Dim, NAtom)

Notice also that we can list multiple variable names that have the same type, dimensions (if

array), and intent (if arguments) on the same line in place of NAME.

In addition to the subroutine arguments, we define three additional variables that are used only

within our function, created upon entry and destroyed upon exit:

© 2025 M. Scott Shell 11/26 last modified 9/26/2025

real(8), dimension(0:Dim-1) :: PosAvg

integer :: i, j

PosAvg is a length-three array that we will use to hold the centroid position we compute. The

integers i and j are the indices we will use when writing loops.

The first line of our program computes the centroid (average position) of our array:

PosAvg = sum(Pos, 1) / dble(NAtom)

The Fortran function sum takes an array argument and sums it, optionally over a specified

dimension. Here, we indicate a summation over the first axis, that corresponding to the particle

number. In other words, Fortran sums all of the x, y, and z values separately and returns a length-

three array. It is very important to notice here that the first axis of an array is indicated with 1

rather than 0, as would be the case in Python. This is because Fortran ordering naturally begins

at 1.

The dble function above takes the integer NAtom and converts it to a double-precision number,

e.g., of type real(8). It is a good idea to explicitly convert types using such functions in

Fortran. Not doing so will force the compiler to insert conversions that many not be what we

desired, and could result in extra unanticipated steps that might slow performance. In addition

to dble, int(X) will convert any argument X to an integer type.

The lines that follow modify the Pos array to subtract the centroid positions from it:

do i = 0, NAtom - 1

 do j = 0, Dim - 1

 Pos(i,j) = Pos(i,j) - PosAvg(j)

 end do

end do

Notice that we have two loops that iterate over the array indices. Each loop has the following

form:

do VAR = START, STOP

 COMMANDS

end do

In Fortran, such do loops involve integers and are inclusive of both the starting and stopping

values. Indentation here is optional and just for ease of reading, because it is the end do

command that signals the end of a loop.

Like Python, Fortran allows array operations. What this means internally is that Fortran will write

out the implied do loop over array elements if we perform array calculations. We could therefore

simplify the above code by removing the inner loop:

© 2025 M. Scott Shell 12/26 last modified 9/26/2025

subroutine CenterPos(Pos, Dim, NAtom)

 implicit none

 integer, intent(in) :: Dim, NAtom

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos

 real(8), dimension(0:Dim-1) :: PosAvg

 integer :: i

 PosAvg = sum(Pos, 1) / dble(NAtom)

 do i = 0, NAtom - 1

 Pos(i,:) = Pos(i,:) - PosAvg(:)

 end do

end subroutine

Here, we use Fortran slicing notation to indicate that we want to apply the mathematical

operation to each array element.

Slicing of Fortran arrays is very similar to that of NumPy, and uses the start:stop:step

notation, where each of these can be optional. One small difference is that the upper bounds of

arrays are inclusive in Fortran, whereas they are exclusive in Python. In other words,

PosAvg[:2] takes elements 0 through 1 in Python and PosAvg(:2) takes elements 0

through 2 in Fortran.

There is one other, major difference between slicing arrays in Fortran and NumPy: the former

does not permit broadcasting. That means that every array in a mathematical operation designed

to operate elementwise must be the exact same dimensions and size. In NumPy, on the other

hand, broadcasting can be used to automatically up-convert arrays to higher dimensionalities

when performing such operations.

A Fortran case study
To illustrate the Fortran language, we will consider the following subroutine that computes the

total potential energy and force on each atom for a system of Lennard-Jones particles. Here,

total potential energy is given by a sum of pairwise interactions:

𝑈 = ∑ 𝑢(𝑟𝑖𝑗)

𝑖<𝑗

𝑢(𝑟𝑖𝑗) = 4𝜖 [(
𝑟𝑖𝑗

𝜎
)

−12

− (
𝑟𝑖𝑗

𝜎
)

−6

]

The force in the x-direction on a particular atom is given by:

𝐹𝑖,𝑥 = −
𝜕𝑈

𝜕𝑥𝑖

= −
𝜕

𝜕𝑥𝑖
∑ 𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

© 2025 M. Scott Shell 13/26 last modified 9/26/2025

= − ∑
𝜕𝑟𝑖𝑗

𝜕𝑥𝑖

𝜕

𝜕𝑟𝑖𝑗
𝑢12(𝑟𝑖𝑗)

𝑗≠𝑖

But since 𝑟𝑖𝑗
2 = (𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
,

𝐹𝑖,𝑥 = − ∑ (
𝑥𝑖 − 𝑥𝑗

𝑟𝑖𝑗
)

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

Thus, generalizing to all three coordinates and using vector notation for 𝐫𝑖𝑗 = 𝐫𝑗 − 𝐫𝑖:

𝐅𝑖 = ∑ (
𝐫𝑖𝑗

𝑟𝑖𝑗
)

𝜕

𝜕𝑟𝑖𝑗
𝑢(𝑟𝑖𝑗)

𝑗≠𝑖

= ∑ (
𝐫𝑖𝑗

𝑟𝑖𝑗
) (

4𝜖

𝜎
) [−12 (

𝑟𝑖𝑗

𝜎
)

−13

+ 6 (
𝑟𝑖𝑗

𝜎
)

−7

]

𝑗≠𝑖

= ∑ 𝐫𝑖𝑗 (
𝜖

𝜎
) [−48 (

𝑟𝑖𝑗

𝜎
)

−14

+ 24 (
𝑟𝑖𝑗

𝜎
)

−8

]

𝑗≠𝑖

These equations form the basis of our pairwise interaction loop. We notice that we will need to

compute vectors, like 𝐫𝑖𝑗, as well as distances, like 𝑟𝑖𝑗. In addition, a large portion of our

computational overhead will involve raising quantities to powers.

We must also consider the effects of periodic boundary conditions when computing 𝐫𝑖𝑗 and 𝑟𝑖𝑗.

Each particle should see only those images of other particles that are closest to it. We can

accomplish this task by finding the minimum image distance between each pair of particles 𝐫𝑖𝑗
0 .

For each component, we use the rounding function nint, which returns the nearest integer

value:

𝐫𝑖𝑗
0 = 𝐫𝑖𝑗 − 𝐿 nint(𝐫𝑖𝑗 𝐿⁄)

Here 𝐿 is the length of the simulation box, and may be a vector for non-cubic boxes. Notice that

this equation implies a separate operation for each component x, y, and z.

Finally, we have to treat the truncation of our potential. We will introduce a cutoff at a pairwise

distance 𝑟𝑐, beyond which the value of the potential will be zero; typically 𝑟𝑐 = 2.5𝜎 or greater.

We will also shift our entire potential up in energy by the value at 𝑟𝑐 so that the potential energy

between any pair of particles continuously approaches zero at 𝑟𝑐. Thus we have:

𝑢(𝑟𝑖𝑗) = {
4𝜖 [(

𝑟𝑖𝑗

𝜎
)

−12

− (
𝑟𝑖𝑗

𝜎
)

−6

] − 4𝜖 [(
𝑟𝑐

𝜎
)

−12

− (
𝑟𝑐

𝜎
)

−6

] 𝑟𝑖𝑗 ≤ 𝑟𝑐

0 𝑟𝑖𝑗 > 𝑟𝑐

© 2025 M. Scott Shell 14/26 last modified 9/26/2025

In our simulation, we will work with dimensionless units such that values for positions/distances

and energies are given in units of 𝜎 and 𝜖 respectively. Thus, our pairwise potential function

actually looks like:

𝑢(𝑟𝑖𝑗) = {
4[𝑟𝑖𝑗

−12 − 𝑟𝑖𝑗
−6] − 4[𝑟𝑐

−12 − 𝑟𝑐
−6] 𝑟𝑖𝑗 ≤ 𝑟𝑐

0 𝑟𝑖𝑗 > 𝑟𝑐

We are now ready to write our subroutine. A naïve implementation unoptimized for speed might

look like:

ljlibfortran.f90

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom)

 implicit none

 integer, intent(in) :: Dim, NAtom

 real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos

 real(8), intent(in) :: L, rc

 real(8), intent(out) :: PEnergy

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces

 real(8), dimension(Dim) :: rij, Fij

 real(8) :: d, Shift

 integer :: i, j

 PEnergy = 0.

 Forces = 0.

 Shift = -4. * (rc**(-12) – rc**(-6))

 do i = 0, NAtom - 1

 do j = i + 1, NAtom - 1

 rij = Pos(j,:) - Pos(i,:)

 rij = rij - L * dnint(rij / L)

 d = sqrt(sum(rij * rij))

 if (d > rc) then

 cycle

 end if

 PEnergy = PEnergy + 4. * (d**(-12) – d**(-6)) + Shift

 Fij = rij * (-48. * d**(-14) + 24. * d**(-12))

 Forces(i,:) = Forces(i,:) + Fij

 Forces(j,:) = Forces(j,:) - Fij

 enddo

 enddo

end subroutine

Let’s consider the features of this subroutine. The arguments Pos, L, and rc are all sent to the

function using the intent(in) attribute and are not modified. The float PEnergy is

intent(out), meaning that it will be returned from our function. The array Forces is

intent(inout). The reason that we did not use intent(out) for Forces is that this will

ultimately imply creation of a new array each time the function is called, after we compile with

f2py. By declaring the array as intent(inout), we will be able to re-use an existing array for

storing the forces, thus avoiding any performance hit that would accompany new array creation.

Finally, the arguments Dim and NAtom give the sizes of various array dimensions.

© 2025 M. Scott Shell 15/26 last modified 9/26/2025

Upon entering the subroutine, we zero the values of the potential energy and forces since we

will add to these variables during the pairwise loop. We also precalculate the values of any

constants that will be used during the loop, such as the energy shift due to the pairwise potential

truncation.

In the pairwise loop, we compute the minimum image distance using the code

rij = Pos(j,:) - Pos(i,:)

rij = rij - L * dnint(rij / L)

Notice that rij is a length-three array and thus these lines are actually implied loops over each

element. Here, dnint is the Fortran function returning the nearest integer of its argument as a

type double or real(8) (the same as a Python float).

The absolute distance is computed and we then determine whether or not a pair of atoms is

beyond the distance cutoff:

d = sqrt(sum(rij * rij))

if (d > rc) then

 cycle

end if

The cycle statement in Fortran is equivalent to continue in Python, and it immediately

causes the innermost loop to advance and return to the next iteration. Here, we use it to skip

ahead to the next atom pair if two atoms are beyond the cutoff.

Notice the formatting of the if statement. In general, Fortran conditional statements have the

form:

if (CONDITION) then

 COMMANDS

else if (CONDITION) then

 COMMANDS

else

 COMMANDS

end if

The test condition can be any conditional expression built from comparison operators,

parenthesis, and compound statements. In Fortran, conditional comparisons are given by ==, <,

>, <=, >= and /=. Only the last of these, which signifies “not equals to”, is different from Python.

Moreover, in Fortran compound expressions can be written using .and., .or., and .not.

which differ from Python only by the presence of a preceding and trailing period. Similarly, the

Boolean constants in Fortran are written as .true. and .false.

After calculating the force, we add this vector to the force array for particle i and the negative

vector for particle j in the loop:

© 2025 M. Scott Shell 16/26 last modified 9/26/2025

Fij = rij * (-48. * d**(-14) + 24. * d**(-12))

Forces(i,:) = Forces(i,:) + Fij

Forces(j,:) = Forces(j,:) – Fij

Notice that, like Python, the power operator is written as **.

In addition to the sqrt function used in this example, Fortran provides a large number of

mathematical operations, almost all of which can be used to operate on entire arrays at a time.

These functions include:

mod, sin, cos, tan, cotan, asin, acos, atan, sinh, cosh,

tanh, asinh, acosh, atanh, exp, log, log10, sqrt,

ceiling, floor, nint, erf, erfc, huge, tiny, epsilon

For many of these, the default versions of the functions return single-precision numbers. To

obtain double-precision return values, the equivalent of Python floats, there are versions of the

functions that start with “d”, such as dnint from nint.

In addition there are a number of functions that return information about arrays or perform

array-specific mathematical operations:

count, sum, product, minval, maxval, minloc, maxloc,

matmul, transpose

Many of these functions accept an optional argument axis=X that will perform the indicated

operation over the specified axis only, returning an array of one smaller dimension. Keep in mind

that in Fortran the first axis is axis=1, as opposed to Python’s axis=0.

Maximizing computational efficiency in Fortran code
While the above code appears simple and straightforward, there are a number of ways in which

it might be rewritten to require much fewer floating point calculations.

First, we never need to find the absolute distance between two particles; rather, all computations

can be rewritten in terms of the squared distance. Thus we can remove the square root

operation, which will result in significant time savings.

Second, we can take much greater control over the exponentiation performed to specify exactly

the number of multiplications. In particular, the force calculation relies on terms that have

overlap with the potential calculation.

Third, we can copy the position of particle i into a temporary array to be used in the loop over j.

This will save the effort of having to locate i’s position in memory each time we loop through j,

as large multidimensional array access can be slow.

© 2025 M. Scott Shell 17/26 last modified 9/26/2025

With these considerations, our optimized computation looks like:

ljlibfortran.f90

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom)

 implicit none

 integer, intent(in) :: Dim, NAtom

 real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos

 real(8), intent(in) :: L, rc

 real(8), intent(out) :: PEnergy

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces

 real(8), dimension(Dim) :: rij, Fij, Posi

 real(8) :: d2, id2, id6, id12

 real(8) :: rc2, Shift

 integer :: i, j

 PEnergy = 0.

 Forces = 0.

 Shift = -4. * (rc**(-12) – rc**(-6))

 rc2 = rc * rc

 do i = 0, NAtom – 1

 !store Pos(i,:) in a temporary array for faster access in j loop

 Posi = Pos(i,:)

 do j = i + 1, NAtom - 1

 rij = Pos(j,:) - Posi

 rij = rij - L * dnint(rij / L)

 !compute only the squared distance and compare to squared cut

 d2 = sum(rij * rij)

 if (d2 > rc2) then

 cycle

 end if

 id2 = 1. / d2 !inverse squared distance

 id6 = id2 * id2 * id2 !inverse sixth distance

 id12 = id6 * id6 !inverse twelvth distance

 PEnergy = PEnergy + 4. * (id12 – id6) + Shift

 Fij = rij * ((-48. * id12 + 24. * id6) * id2)

 Forces(i,:) = Forces(i,:) + Fij

 Forces(j,:) = Forces(j,:) - Fij

 enddo

 enddo

end subroutine

Some general considerations for writing fast routines are:

• Store values that are used multiple times in temporary variables to avoid repeating

calculations. In the above example, 𝑟𝑖𝑗
−6 was used a number of times for each pair and

stored as its own variable id6.

• Break down large polynomial expressions so that fewer multiplications are needed. For

example, x**3+x**2+x+1 requires four multiplication and three addition operations.

Alternatively, x*(x*(x+1)+1)+1 requires only two multiplication and three addition

operations, but gives the same result. In a similar manner, x**8 can be evaluated fastest

by ((x**2)**2)**2.

© 2025 M. Scott Shell 18/26 last modified 9/26/2025

• If expensive mathematical operations like log, exp, or sqrt can be avoided, rewrite your

code to do so.

• If the same elements of a large array are to be accessed many times in succession during

a loop, copy these values into a temporary variable first. Fortran will be able to read and

write values in variables or smaller, single-dimensional arrays much faster than in large

arrays because memory access can be slow and small variables can be optimized to sit in

faster parts of memory.

• In Fortran, arrays are traversed most efficiently in memory if the leftmost array index

varies the fastest. For example, a double loop over Pos(i,j) is the fastest if i is the

inner loop and j the outer. Similarly, expressions like Pos(:,j) are faster than

Pos(j,:). Unfortunately, writing code in this way is not always possible given the way

in which it is natural to define arrays in Python and how Python passes variables to

Fortran. In the above example, we were not able to make the inner index vary fastest

because Pos was passed with the (x,y,z) coordinates in the second index, which we need

to access all at one time. However, if given the option, choose loops that vary the fastest

over the leftmost array indices.

Multiple functions in each Fortran file
We can put multiple subroutines inside the same Fortran file. Generally, it is a good idea to group

functions together in files by their purpose and level of generality. In other words, keep functions

specific to the potential energy function in a separate Fortran file from those which perform

generic geometric manipulations (e.g., rotation of a rigid body). When compiled for Python, all

of the subroutines in a given Fortran file will appear as functions in the same imported module.

Here is the example from above extended with a subroutine that advances the positions and

velocities of each atom using the velocity Verlet algorithm:

ljlibfortran.f90

subroutine EnergyForces(Pos, L, rc, PEnergy, Forces, Dim, NAtom)

 implicit none

 integer, intent(in) :: Dim, NAtom

 real(8), intent(in), dimension(0:NAtom-1, 0:Dim-1) :: Pos

 real(8), intent(in) :: L, rc

 real(8), intent(out) :: PEnergy

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces

 real(8), dimension(Dim) :: rij, Fij, Posi

 real(8) :: d2, id2, id6, id12

 real(8) :: rc2, Shift

 integer :: i, j

 PEnergy = 0.

 Forces = 0.

 Shift = -4. * (rc**(-12) – rc**(-6))

© 2025 M. Scott Shell 19/26 last modified 9/26/2025

 rc2 = rc * rc

 do i = 0, NAtom – 1

 !store Pos(i,:) in a temporary array for faster access in j loop

 Posi = Pos(i,:)

 do j = i + 1, NAtom - 1

 rij = Pos(j,:) - Posi

 rij = rij - L * dnint(rij / L)

 !compute only the squared distance and compare to squared cut

 d2 = sum(rij * rij)

 if (d2 > rc2) then

 cycle

 end if

 id2 = 1. / d2 !inverse squared distance

 id6 = id2 * id2 * id2 !inverse sixth distance

 id12 = id6 * id6 !inverse twelvth distance

 PEnergy = PEnergy + 4. * (id12 – id6) + Shift

 Fij = rij * ((-48. * id12 + 24. * id6) * id2)

 Forces(i,:) = Forces(i,:) + Fij

 Forces(j,:) = Forces(j,:) - Fij

 enddo

 enddo

end subroutine

subroutine VVIntegrate(Pos, Vel, Accel, L, CutSq, dt, KEnergy, PEnergy, Dim, NAtom)

 implicit none

 integer, intent(in) :: Dim, NAtom

 real(8), intent(in) :: L, CutSq, dt

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos, Vel, Accel

 real(8), intent(out) :: KEnergy, PEnergy

 external :: EnergyForces

 Pos = Pos + dt * Vel + 0.5 * dt*dt * Accel

 Vel = Vel + 0.5 * dt * Accel

 call EnergyForces(Pos, L, CutSq, PEnergy, Accel, Dim, NAtom)

 Vel = Vel + 0.5 * dt * Accel

 KEnergy = 0.5 * sum(Vel*Vel)

end subroutine

Notice that the VVIntegrate function calls the EnergyForces function within it. When a

Fortran function calls another function, we must also declare the latter using the external

keyword as we wrote above. This tells the compiler that the function we are calling lies

somewhere else in the code we wrote. In addition, called subroutines must be preceded with

the keyword call.

Compiling and debugging
Once we have written our Fortran source code, we must compile it. Ultimately this will be done

automatically by f2py in the creation of a Python module from the .f90 file. However, to debug

our code, it is often useful to first try to compile the Fortran source directly. To compile our code

above, we write at the command line:

c:\> gfortran -c ljlibfortran.f90

If there were no errors in our program, gfortran will return quietly with no output and a file

ljlib3.o will have been created, an object file that can be subsequently linked into an executable

© 2025 M. Scott Shell 20/26 last modified 9/26/2025

file. We will have no use for the .o file here, since we are only concerned with identifying errors

in our code at this point, and thus it is safe to delete it.

If gfortran finds a problem with our code, it will return an error message. For example, if we used

the assignment k=1 in our code, but forgot to explicitly define the type of k, gfortran would

return:

ljlibfortran.f90:50.5:

 k = 1

 1

Error: Symbol 'k' at (1) has no IMPLICIT type

In the first line, we are given the line (50) and column (5) numbers where it found the error, as

well as the specific error message. The number 1 is used underneath the offending line to show

where the error occurred.

Sometimes our program compiles just fine, but we still experience numerical problems in running

our code. At this point, it often becomes useful to track values of variables throughout the

program execution. In Python, we could place print statements throughout the code to

periodically report on variable values. If we also need to see the values of variables during called

Fortran routines, we can similarly place print statements within our Fortran code during test

production. In Fortran a print statement has the form:

print *, var1, var2, var3

Here, one must always include the “*,” indicator after the Fortran print statement to tell it that

you want to send the values to the terminal (screen), and not to a file or attached device.

There are also many Fortran source code editors with a graphical user interface that color-code

statements and functions for ease of viewing, and that will often check for simple errors. The

Spyder editor included with the Anaconda Distribution is one such editor.

Preparing code for f2py
Generally, if we write Fortran code that strongly types and specifies intents for all variables, then

there is very little that we need to do before using f2py to convert it into a Python-importable

module. However, for array variables with the intent(inout) attribute, we typically need

to add a small directive that tells f2py how we want to deal with this particular kind of variable.

f2py directives are small comments at the beginning of lines (no preceding spaces) that start as

“!f2py”. For intent(inout) variables, we simply add

!f2py intent(in,out) :: VAR

© 2025 M. Scott Shell 21/26 last modified 9/26/2025

to the line after an argument declaration statement.

Consider the EnergyForces function. Here, we need to place an f2py directive immediately

after the type declaration for the Forces variable:

…

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Forces

!f2py intent(in,out) :: Forces

…

Since our directive begins with the Fortran comment character “!”, it will not affect compilation

by Fortran during debugging. However, the addition of intent(in,out) :: Forces will

tell f2py that we want the Python version of our Fortran function to treat the array Forces as

an argument and also as a return value as a part of the return tuple.

We need to similarly modify the code for VVIntegrate:

…

 real(8), intent(inout), dimension(0:NAtom-1, 0:Dim-1) :: Pos, Vel, Accel

!f2py intent(in,out) :: Pos, Vel, Accel

…

Running f2py
Once we have written and debugged our Fortran source code, we are ready to compile it into a

Python module using the f2py utility. If your environment variables are set up correctly, you

should be able to run f2py directly from the command line or terminal. On a Windows system,

start an Anaconda Prompt to open a terminal.

Running f2py without any arguments prints out a long help file:

c:\> f2py.py
Usage:

1) To construct extension module sources:

 f2py [<options>] <fortran files> [[[only:]||[skip:]] \

 <fortran functions>] \

 [: <fortran files> ...]

2) To compile fortran files and build extension modules:

 f2py -c [<options>, <build_flib options>, <extra options>] <fortran files>

3) To generate signature files:

 f2py -h <filename.pyf> ...< same options as in (1) >

Description: This program generates a Python C/API file (<modulename>module.c)

 that contains wrappers for given fortran functions so that they

 can be called from Python. With the -c option the corresponding

 extension modules are built.

© 2025 M. Scott Shell 22/26 last modified 9/26/2025

…

f2py is a powerful utility that enables a lot of control over how modules are compiled. Here we

will only describe a specific subset of its abilities. To compile our code into a module, we use a

command of the following form:

f2py.py –c –m MODULENAME SOURCE.f90

Here, MODULENAME is the name we want for our module after it is compiled. SOURCE.f90 is

the name of the file containing the Fortran source code. The –c and –m flags indicate compilation

and the name specification, respectively.

Sometimes, particularly on Windows platforms, we need to explicitly specify the compilers to

make the command work:

f2py.py –c –m MODULENAME SOURCE.f90 --fcompiler=gnu95 --compiler=mingw32

The option --fcompiler=gnu95 tells f2py to use the GFortran compiler that we downloaded

and installed earlier. There are other Fortran compilers that will work with f2py that could be

specified here. To see what compilers are present and recognized on your system, use the

following command:

c:\> f2py.py –c --help-fcompiler
Fortran compilers found:

 --fcompiler=compaqv DIGITAL or Compaq Visual Fortran Compiler (6.6)

 --fcompiler=gnu95 GNU Fortran 95 compiler (4.4.0)

Compilers available for this platform, but not found:

 --fcompiler=absoft Absoft Corp Fortran Compiler

 --fcompiler=g95 G95 Fortran Compiler

 --fcompiler=gnu GNU Fortran 77 compiler

 --fcompiler=intelev Intel Visual Fortran Compiler for Itanium apps

 --fcompiler=intelv Intel Visual Fortran Compiler for 32-bit apps

Compilers not available on this platform:

 --fcompiler=compaq Compaq Fortran Compiler

 --fcompiler=hpux HP Fortran 90 Compiler

 --fcompiler=ibm IBM XL Fortran Compiler

 --fcompiler=intel Intel Fortran Compiler for 32-bit apps

 --fcompiler=intele Intel Fortran Compiler for Itanium apps

 --fcompiler=intelem Intel Fortran Compiler for EM64T-based apps

 --fcompiler=lahey Lahey/Fujitsu Fortran 95 Compiler

 --fcompiler=mips MIPSpro Fortran Compiler

 --fcompiler=nag NAGWare Fortran 95 Compiler

 --fcompiler=none Fake Fortran compiler

 --fcompiler=pg Portland Group Fortran Compiler

 --fcompiler=sun Sun or Forte Fortran 95 Compiler

 --fcompiler=vast Pacific-Sierra Research Fortran 90 Compiler

For compiler details, run 'config_fc --verbose' setup command.

Part of the f2py process involves the automated writing and compilation of C wrapper code

around the Fortran routines. The option --compiler=mingw32 tells f2py to use the MinGW

C compiler that comes with gfortran. This compiler is specific to the Windows system. On other

© 2025 M. Scott Shell 23/26 last modified 9/26/2025

systems, this option might be omitted to use the default C compiler, or another C compiler could

be specified directly (e.g., --compiler=gcc).

Running f2py for our Lennard-Jones example looks something like the following:

c:\>f2py.py -c -m ljlibfortran ljlibfortran.f90

Cannot use distutils backend with Python>=3.12, using meson backend instead.

Using meson backend

Will pass --lower to f2py

See https://numpy.org/doc/stable/f2py/buildtools/meson.html

Reading fortran codes...

 Reading file 'ljlibfortran.f90' (format:free)

Post-processing...

 Block: ljlibfortran

 Block: calcenergyforces

 Block: vvintegrate

Applying post-processing hooks...

 character_backward_compatibility_hook

Post-processing (stage 2)...

Building modules...

 Building module "ljlibfortran"...

 Generating possibly empty wrappers"

 Maybe empty "ljlibfortran-f2pywrappers.f"

 Constructing wrapper function "calcenergyforces"...

 penergy,forces = calcenergyforces(pos,l,rc,forces,[dim,natom])

 Generating possibly empty wrappers"

 Maybe empty "ljlibfortran-f2pywrappers.f"

 Constructing wrapper function "vvintegrate"...

 pos,vel,accel,kenergy,penergy = vvintegrate(pos,vel,accel,l,cutsq,dt,[dim,natom])

 Wrote C/API module "ljlibfortran" to file ".\ljlibfortranmodule.c"

The Meson build system

Version: 1.6.0

Source dir: C:\Users\mscot\AppData\Local\Temp\tmpfdwd5z9g

Build dir: C:\Users\mscot\AppData\Local\Temp\tmpfdwd5z9g\bbdir

Build type: native build

Project name: ljlibfortran

Project version: 0.1

Fortran compiler for the host machine: gfortran (gcc 15.1.0 "GNU Fortran (conda-forge gcc 15.1.0-

3) 15.1.0")

Fortran linker for the host machine: gfortran ld.bfd 2.44

C compiler for the host machine: cc (gcc 15.1.0 "cc (conda-forge gcc 15.1.0-3) 15.1.0")

C linker for the host machine: cc ld.bfd 2.44

Host machine cpu family: x86_64

Host machine cpu: x86_64

Program C:\Users\mscot\anaconda3\python.exe found: YES (C:\Users\mscot\anaconda3\python.exe)

Run-time dependency python found: YES 3.13

Library quadmath found: YES

Build targets in project: 1

Found ninja-1.12.1 at C:\Users\mscot\anaconda3\Library\bin\ninja.EXE

INFO: autodetecting backend as ninja

INFO: calculating backend command to run: C:\Users\mscot\anaconda3\Library\bin\ninja.EXE -C

C:/Users/mscot/AppData/Local/Temp/tmpfdwd5z9g/bbdir

ninja: Entering directory `C:/Users/mscot/AppData/Local/Temp/tmpfdwd5z9g/bbdir'

[6/6] Linking target ljlibfortran.cp313-win_amd64.pyd

A fair amount of text is outputted when running f2py. You will know that your code has compiled

successfully when (1) there are no signs of errors, and (2) a compiled module file now exists. On

Windows, your module file will end in .pyd, while on Linux it will typically end in .so. The name

of your file is that which you specified in the MODULENAME option.

The f2py utility will generate automatically all of the code necessary to pass NumPy arrays in

between Python and your compiled Fortran routines. In particular, it makes sure that function

© 2025 M. Scott Shell 24/26 last modified 9/26/2025

arguments obey the right types and dimensioning. As a part of this effort to make sure Python

arrays are Fortran-friendly, NumPy can sometimes make a copy of an input array to send to the

compiled function.

Sometimes it is convenient to know when copies are made of arrays sent to Fortran routines,

rather than the original Python arrays themselves, since such copying can create a performance

hit. One can compile f2py with the additional option -DF2PY_REPORT_ON_ARRAY_COPY=1 to

have Fortran-compiled routines print out messages in real-time each time such a copying event

occurs. This is useful for debugging / optimizing code, but final production code should not use

this option.

Help with f2py
There are a number of online resources for reading about additional options with and for

troubleshooting the f2py utility. The main website can be found at:

https://numpy.org/doc/stable/f2py/

Importing and using f2py-compiled modules in Python
Once we have compiled our Fortran source code into a module using f2py, it is as easy to import

as any other module:

>>> import ljlibfortran

f2py embeds information about the functions it compiles into docstrings. To see these

docstrings, use the help function:

>>> help(ljlibfortran)

Help on module ljlibfortran:

NAME

 ljlibfortran

DESCRIPTION

 This module 'ljlibfortran' is auto-generated with f2py (version:2.2.5).

 Functions:

 penergy,forces = calcenergyforces(pos,l,rc,forces,dim=shape(pos, 1),natom=shape(pos,

0))

 pos,vel,accel,kenergy,penergy = vvintegrate(pos,vel,accel,l,cutsq,dt,dim=shape(pos,

1),natom=shape(pos, 0))

 .

DATA

 __f2py_numpy_version__ = '2.2.5'

 calcenergyforces = <fortran function calcenergyforces>

 vvintegrate = <fortran function vvintegrate>

VERSION

 2.2.5

FILE

© 2025 M. Scott Shell 25/26 last modified 9/26/2025

 c:\users\mscot\onedrive\courses\che210d\2025\scripts\python\ljlibfortran.cp313-

win_amd64.pyd

This summary tells us that the module contains two functions, energyforces and

vvintegrate. Notice that f2py converts all Fortran variable and function names to lowercase

by default.

In addition to their names, the docstring tells us the format of a call to each of the functions. We

can get more detailed information by examining the docstrings of the individual functions. We

need to actually print out the docstring to see the details:

>>> print(ljlibfortran.calcenergyforces.__doc__)

penergy,forces = calcenergyforces(pos,l,rc,forces,[dim,natom])

Wrapper for ``calcenergyforces``.

Parameters

pos : input rank-2 array('d') with bounds (natom,dim)

l : input float

rc : input float

forces : input rank-2 array('d') with bounds (natom,dim)

Other Parameters

dim : input int, optional

 Default: shape(pos, 1)

natom : input int, optional

 Default: shape(pos, 0)

Returns

penergy : float

forces : rank-2 array('d') with bounds (natom,dim)

Here, we are told that there are four arguments we must provide: pos, l, rc, and forces.

These arguments correspond to any for which we specified the intent(in) or

intent(inout) attributes. However, we do not need to specify the dimension variables dim

and natom, as these will be taken automatically from the shape of the argument pos.

The docstring also tells us that the function will return two arguments, penergy and forces.

These correspond to any Fortran arguments for which we specified intent(out) or

intent(inout). Thus a call from Python to the energyforces routine would look like:

>>> penergy, forces = ljlib.energyforces(pos, l, rc, forces)

where we would have needed to supply the vector of positions, box length, cutoff, and force

array. If we had specified intent(out) for forces, it would not have appeared as an

argument and Python instead would have created a new force array with each function call.

© 2025 M. Scott Shell 26/26 last modified 9/26/2025

Similarly, we can examine the docstring of the vvintegrate function:

>>> print(ljlibfortran.vvintegrate.__doc__)

pos,vel,accel,kenergy,penergy =

vvintegrate(pos,vel,accel,l,cutsq,dt,[dim,natom])

Wrapper for ``vvintegrate``.

Parameters

pos : input rank-2 array('d') with bounds (natom,dim)

vel : input rank-2 array('d') with bounds (natom,dim)

accel : input rank-2 array('d') with bounds (natom,dim)

l : input float

cutsq : input float

dt : input float

Other Parameters

dim : input int, optional

 Default: shape(pos, 1)

natom : input int, optional

 Default: shape(pos, 0)

Returns

pos : rank-2 array('d') with bounds (natom,dim)

vel : rank-2 array('d') with bounds (natom,dim)

accel : rank-2 array('d') with bounds (natom,dim)

kenergy : float

penergy : float

A call to vvintegrate would therefore look like:

>>> pos, vel, accel, kenergy, penergy = ljlib.vvintegrate(pos, vel, accel,

... l, cutsq, dt)

Note that f2py automatically makes the conversions / equivalencies of Fortran real(8) and

Python float types.

And that’s it! You are now ready to use your Fortran routines with Python.

Learning more about Fortran
It is beyond the scope of this document to cover the entire Fortran language. However, a number

of excellent tutorials for Fortran programming are available online, and many digital assistants

(like ChatGPT) are able to produce drafts of Fortran code. Keep in mind, however, that you

probably only need a small subset of Fortran knowledge if your goal is to simply write fast

numerical routines that are compiled for Python, where Python then does more of the complex

programming work and organization.

