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Abstract:  A Molecular Dynamics simulation is developed to measure the dilatational (compression) rheological 
properties of a fluid and is demonstrated with the Lennard-Jones 12-6 atomic fluid.  Small amplitude, oscillatory volume 
changes imposed on the fluid result in an oscillatory pressure response, from which the complex dilatational modulus is 
computed.  A frequency sweep at low strain amplitude shows that the LJ fluid is elastic dominant with an elastic 
compression modulus that compares well to the values obtained from equilibrium pressure-density isotherms, computed 
here and in literature.    
 
I.   INTRODUCTION 
The bulk compressional or dilatational modulus of a material is a measure of a materials resistance to a compression or a 
dilatational strain.  Formally, it is defined as: 
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where p is the pressure, ρ is the density and V is the volume and E is an isothermal quantity. 
 
For a bulk fluid, this property would typically be determined from the equilibrium equation of state, that is, the p-ρ 
isotherm.  However, here it is proposed to extract these properties via imposed dilatational strains on the system, where 
the volume/density of the simulation varies sinusoidally and the corresponding pressure response is monitored.  A 
Lennard-Jones fluid is chosen to demonstrate this idea.  The volume available to the LJ atoms is determined by the 
distance separating two solid surfaces in the walls.  An oscillatory, uniaxial volume change(strain) is imposed on the fluid 
by moving the position of the walls relative to each other and measuring the pressure in the fluid via calculation of the 
forces on the walls. 
 
II.  METHODS 
II.A  Simulation Parameters 

The simulation is periodic in the y and z dimensions, with a size of * 5L  .  The x-dimension is finite, as the fluid atoms 

are bound by the two implicit walls.  The initial distance between the walls is taken to be *8L , in order to reduce any 

effect the walls have on the fluid.  Therefore, the left and right walls are positioned at * *
,0 4L

wx L    and * *
,0 4R

wx L  .  The 

number of atoms in the simulation is determined based upon the volume of the simulation box and the desired density:
* * * *3 *8 1000N V L      . 

 
II.B  Potential Energy and Forces 
In this study, there are two types of interactions: atom-atom interactions and atom-wall interactions.  Interatomic 
interactions are described using the Lennard-Jones 12-6 potential. 
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As the dimension normal to the walls is finite and non-periodic, the atom-wall interaction is needed to ensure a no flux 
boundary condition.  Here, the Lennard Jones 9-3 virtual wall potential is used.  This potential describes the interaction of 
a single atom with a semi-infinite wall: 
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For simplicity, the surface atoms have the same size as the fluid atoms, and with the same interaction energy.  It is 
assumed the surface atoms have a close-packed surface density of ρSσ

3 = 0.74. 
 
The total potential energy is then 
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To determine the pressure in the system, the forces on each wall are first calculated assuming the force the wall exerts on 

each atom is equal and opposite to the force the atom has on the wall.  Explicitly, this is written as * ( ) * ( )
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The pressure is then determined with the following equation: 
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Finally, during oscillation runs, a Berensden thermostat is employed at each timestep in order to ensure the total kinetic 
energy of the system doesn’t change drastically upon motion of the walls.  The scaling factor for the velocities is given as 
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with a coupling parameter of   = 100.  In addition, the velocity scaling factor is applied only to 

the atomic velocities in the periodic dimensions y and z. 
 

 
 
II.C  Simulation Algorithm 
 
II.C.1 Equilibration and Production Run 
The first step of the simulation is to first place atoms on a cubic lattice.  The system then undergoes a potential energy 
minimization via a conjugate gradient algorithm. 
. 
Upon giving the atoms random initial velocities and accelerations, the Velocity Verlet Algorithm is used to integrate the 

equations of motion for the Molecular Dynamics simulation, using a timestep of *dt  = 0.001.  In the initial run, a velocity 
rescale algorithm is used to equilibrate the system to the desired temperature for 100,000 timesteps, and rescale frequency 
of 1000 timesteps.  Next, velocity rescaling is turned off to begin the production run used to collect data (potential energy, 
kinetic energy, and pressure) for 1e5-3e5 timesteps both with and without the thermostat. 
 
II.C.2 Oscillation Run 
In the next step of the simulation, we impose a sinusoidal change in the distance between the walls at a chosen reduced 

frequency *f  on the fluid by updating the positions of the walls at every timestep according to: 
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resulting in a  volume/density change in the fluid.  For small changes, 0 , can be thought of as a dilatational strain. 
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The oscillatory dilatation of the fluid induces a pressure change from its equilibrium value, 
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which in general gives a pressure response that may be out of phase with the imposed strain by a phase lag  . 
 

The complex dilatational modulus, the quantity of interest, consists of an in-phase, elastic component *'E  and an out-of-

phase, or viscous, component *''E ; The modulus is then given by  
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The oscillation step is run for 1or more periods, or   1* *
periodsN f dt


timesteps.  Data is averaged-over and collected every 

1000 timesteps, which gives at least 100 data points per period.  The pressure response is fit with Matlab to an equation of 
the form 
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where the constants 0C
 
and 1C give *p and . 

 
III.  RESULTS 
 
III.A  Equilibrium equation of state 
The base state of the Lennard-Jones fluid for the oscillatory MD simulations was chosen to be *

0 0.7   and * 2.0T  .  

To compare the oscillatory results with the equilibrium data, several simulations were performed at different densities in 

order to construct the * *p   isotherm. The measured isotherm compares fairly well to the isotherm reported by Johnson 

et al (1993), who used 864 atoms and a cutoff of * 4Cr  . 

 
Figure 1: Equilibrium * *p   (T* = 2.0) Isotherm 

At the target density of 0.7, the measured equilibrium compression modulus is found to be 15.2, which agrees reasonably 

well to the value of Johnson et al, 11.7 (both obtained here by finding the slope of the * *p   data at * 0.7  ).   
 
III.B Strain amplitude and Frequency sweep 
The first plot shows the normalized, average density and the pressure upon imposing a nominal strain of 0 =0.08 at a 

frequency of 0.01.  Qualitatively, it can be seen that the initial density increase results in an increase in the pressure.  
Moreover, the pressure response looks in-phase with the density change, indicating the LJ fluid responds elastically to the 
dilatational strain.  By fitting the response data, the elastic and viscous components of the compression modulus can be 
calculated.  The second graph shows the calculated modulus as a function of strain amplitude.  At low strain amplitudes 
(<0.1), the modulus is independent of the strain amplitude, indicating the response is linear.  Interestingly, the elastic 
modulus compares quite well to the equilibrium modulus determined from the isotherms.  At higher nominal strain 
amplitudes, the density changes become asymmetric resulting in an asymmetric pressure response that causes the best fit 
modulus to increase. 
 
 



  
Figure 2:  a,b)Density and pressure response upon oscillatory strain; c,d) Complex modulus against c)nominal 
strain amplitude at fixed frequency f=0.01 and against d) reduced frequency at fixed strain amplitude 
 
At a fixed nominal strain amplitude of 0.1, the modulus is measured as a function of the frequency.  At low frequencies, 
the fluid is elastic dominant and agrees with the f→0 result from the equilibrium isotherm.  Only at relatively higher 
frequencies is a viscoelastic behavior observed.  The cross-over between the elastic and viscous components might 
indicate a characteristic relaxation time of the fluid. 
 
In summary, the above simulation experiments using Lennard-Jones atoms show that it is possible to extract bulk 
dilatational mechanical properties of a fluid by moving two bounding walls to create oscillatory volume/density changes 
and monitor pressure changes.  While the Lennard-Jones system may not be the most intriguing system to study, as it is 
one of the most well understood models, it allows for comparison.  Some potential deficiencies in this method could be 
the difficulty in choosing the right type of atom (molecule)-wall interaction for an arbitrary fluid of interest.  In addition, 
the short timescales of MD simulations would limit the possible frequency range one could explore.  Lastly, as bulk fluids 
typically have high compression elasticity, shear deformations rather than dilatational strains govern most everyday fluid 
flows.   
To improve this study, I could impose a true dilatational strain(an oscillatory relative volume change) instead of the 
method used here which is an oscillatory volume change.  The nominal strain in this case is equal to the dilational strain 
only at low strain values.  One type of system this method could also be relevant for is surfactant layers at interfaces, 
which are inherently more compressible and can exhibit interesting viscoelastic behavior. 
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