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Abstract 
MD simulations of Lennard-Jones (LJ) polymer chains of various degrees of polymerization (DP) were 
used to investigate the effects of system size and dispersity in DP on the self-diffusion coefficients, 𝐷, 
and radii of gyration, 𝑅g. Simulations of systems with varying numbers of chains revealed that the 

value and error of the estimated self-diffusion coefficients are relatively insensitive to both dispersity 
and system size. Furthermore, the presence of dispersity did not significantly influence the scaling 
behavior of 𝐷 or 𝑅g with the system DP. In contrast, the full distributions of 𝑅g values were broadened 

substantially across various DPs by the inclusion of dispersity. Overall, these results indicate that the 
effects of dispersity are mitigated in quantities such as diffusion coefficients that represent averages 
over many constituent atoms. 

 
Motivation and Background 

Why Disperse Chains? 

It is well known that many key properties of polymeric systems, such as self-diffusion coefficients 
and radii of gyration, vary strongly with the degree of polymerization (DP) or molecular weight of 
the constituent chains. Accordingly, most simple first-principles models of bulk polymer behavior 
consider systems of identical chains with a precise DP or molecular weight. Unfortunately, this 
idealized system is often not realizable in practice. Nearly all synthetic polymers are disperse. This 
means that, while the average DP of a synthetic polymer mixture may be well controlled, typically by 
means of stoichiometry, the exact DPs of all constituent chains are distributed. 

The effects of this distribution on molecular weight dependent properties is often difficult to 
intuit. While some properties depend primarily on the average DP, others may be strongly affected 
by exact shape of the distribution. Advances in synthetic techniques over the past few decades have 
popularized controlled polymerizations which produce relatively narrow and symmetric DP 
distributions.  

Accordingly, it is worthwhile to investigate the potential effects of moderate dispersity, as 
would be expected in a synthetic polymer melt, on key system properties. In this case, systems of 
Lennard-Jones polymer chains with harmonic bonds are used to investigate the effects of dispersity 
in DP on the calculated self-diffusion coefficients and radii of gyration. 

 
Theoretical Background 

Typically, the DP distribution of synthetic polymers is quantified by three metrics: the number 
average DP (𝑁n), the weight average DP (𝑁w), and the dispersity (Đ = 𝑁w/ 𝑁n) . Statistical 
arguments can be used to derive an expression for the variance in terms of these three metrics; 
namely, Equation 1, below.  
 

𝜎2 = 𝑁n
2(Đ − 1) (1) 

 
 Traditional uncontrolled synthetic techniques such as free radical polymerization tend to 
produce broad DP distributions with large dispersities, Đ > 1.5. This characteristic broadness is 
generally a result of two main issues that arise during synthetic polymerizations: irreversible 
termination reactions and slow initiation relative to propagation rates. Synthetic techniques such as 
anionic polymerization have allowed for the mitigation of these issues and given rise to a host of 
controlled polymerization methods.  
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The DP distributions produced by these techniques are described well by a kinetic model 
known as the ideal living polymerization, which assumes the absence of termination reactions and 
simultaneous initiation of all growing chains. For such a system, the distribution of DPs is given by a 
modified Poisson distribution, shown in Equation 2. 
 

𝑝(𝑁) =
(𝑁n − 1)𝑁−1𝑒−(𝑁n−1)

𝑁 − 1
(2) 

 
Simulation Methodology 

All systems considered in this study were comprised of 𝑁c polymer chains with individual lengths 𝑀𝑖 
confined to a cubic box with side length 𝐿 using periodic boundary conditions. The size of the box is 
related to the total number of atoms in the simulation box by the system average number density, 
𝜌 = 𝑁/𝐿3 = 0.8. The total number of atoms is calculated as the sum of all 𝑀𝑖 in the system. A 2-D 
schematic of this system is depicted in Figure 1. 
 A pairwise force field was used to simulate interatomic energies and forces for all atoms in 
the system.  The model, shown below in Equation 3, assumes Lennard-Jones type interactions for all 
non-bonded interactions and isotropic harmonic potentials for bonded atoms. 
 

𝑢𝑖𝑗 = {

4(𝑟𝑖𝑗
−12 − 𝑟𝑖𝑗

−6)   𝑖𝑗 bonded

𝑘

2
(𝑟𝑖𝑗 − 𝑟0)

2
   𝑖𝑗 not bonded

(3) 

 
Here, 𝑘 = 3000 and 𝑟0 = 1 are the force constant and equilibrium bond distance that govern bonded 
interactions. For convenience of simulation and generality of results, all variables shown have been 
nondimensionalized using the length and energy scales of 𝜎 and ϵ that appear in the typical Lennard-
Jones potential. 

Initial positions for each simulation were obtained by placing atoms on a cubic lattice and 
performing a local energy minimization using the conjugate gradient method. System temperature, 
𝑇 = 1, was controlled during equilibration by rescaling system velocities every 50 timesteps such 
that the total system kinetic energy 𝐸k = 1.5𝑇. Initial velocities were sampled randomly on the 
interval [0,1] for each atom, then rescaled to match the target system temperature. Timesteps were 
performed using the velocity Verlet algorithm with constant step size 𝑑𝑡 = 0.001. 

All simulations detailed below were conducted in duplicate for both precise systems, with all 
chains of identical length (i.e., 𝑀𝑖 = 𝑀 for all 𝑖) and disperse systems, with 𝑀𝑖 sampled randomly 
from the Poisson distribution given in Equation 2 with 𝑁 = 𝑀𝑖 and 𝑁n = 𝑀. Data were obtained over 
production runs of 𝑡prod = 100 following two equilibration runs of 𝑡equil = 10 with velocity rescaling 

every 50 steps. During the second equilibration run, the total system energy was averaged and, 
before starting data production, system velocities were rescaled such that the current total system 
energy is exactly equal to the average value. Error bars, where shown, were obtained from replicate 
runs with different random number seeds under identical simulation conditions. 

 

Results and Discussion 

System Size Effects 

To investigate the effects of varying system size, the mean-squared displacement (MSD) was tracked 
as a function of time for systems with varying 𝑀 and 𝑁c. Self-diffusion coefficients were then were 
estimated for each system via linear regression as 1/6 of the slopes of these MSD curves. This process 
was repeated in triplicate and the standard deviations, referred to here as errors, of the resulting 
diffusion coefficients are shown Figure 2. 
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 The error in the diffusion coefficients seems relatively insensitive to the total number of 
chains for systems of both precise and disperse chains. Although the errors for precise and disperse 
systems are nearly identical in most cases, there are a few interesting discrepancies. Systems of 
precise chains consistently exhibit an increase in the error at low 𝑁c that is not obviously present in 
the disperse systems. This is likely a result of the random sampling for disperse systems which 
produces a significant population of higher molecular weight chains inflating the overall particle 
number and avoiding the trends associated with small system sizes. Although both precise and 
disperse systems exhibit a spike in the error over the range 𝑁c ≈ 25 to 35, this feature is much more 
pronounced in the disperse systems, as seen in Figure 2b. The exact cause of this is unknown; 
however, it is worth noting that these problematic values of 𝑁c also give uncharacteristically small 
diffusion coefficients. 
 
Self-Diffusion Coefficients 

Based on analysis of the error in estimated self-diffusion coefficients at various system sizes, the 
diffusion coefficients were computed for systems of 𝑁c = 20 chains. Figure 3 shows these estimated 
diffusion coefficients on log-log axes for various values of 𝑀 from 2 to 10. Intuitively, the diffusion 
coefficient is smaller for systems with longer chains. Qualitatively, the trends and values for precise 
and disperse systems are very similar. For each value of 𝑀, the precise and disperse diffusion 
coefficients differ by significantly less than the error in either. 
 Given that both trends are roughly linear on log-log axes, linear regression was used to 
roughly estimate the scaling of 𝐷 with 𝑀. In this case, systems with precise chains appear to exhibit 
slightly stronger scaling with molecular weight, 𝐷precise~𝑀

−0.5, while 𝐷disperse~M
−0.4. It is possible 

that this difference in scaling is a result of dispersity creating some degree of uniformity in systems 
with different 𝑀 by including larger or smaller chains. However, given the modest difference in the 
estimated scaling, small number of data points, and large errors, this difference should not be 
overinterpreted. 

 
Figure 1: 2-D schematic rendering of disperse Lennard-Jones polymer chain system. 
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Radius of Gyration 

To visualize the effects of dispersity on system structural parameters, the distribution of 𝑅g values 

was computed for systems of 𝑁c = 20 chains at various degrees of polymerization. Representative 
distributions are shown in Figures 3a, 3b, and 3c. In all cases, the presence of dispersity serves to 
broaden the distributions in 𝑅g. Interestingly, this broadening seems to preserve the presence of any 

local features such as shoulders or local minima in the distribution. For precise systems with chain 
lengths 𝑀 = 2 and 5, the distribution of 𝑅g is extremely narrow. The exact cause of this is unknown; 

however, varying the number of chains simulated had a strong effect on the shape of these 

  
Figure 2: Error in calculated self-diffusion coefficients of (a) precise and (b) disperse polymer systems with 
varying numbers of simulated chains at various degrees of polymerization. 

  
Figure 3: Calculated self-diffusion coefficients of (a) precise and (b) disperse polymer systems with 𝑁c = 
varying at various degrees of polymerization, shown on log-log axes. 

(a) (b) 

(a) (b) 
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distributions, indicating that these extremely peaked distributions may be an artifact of the finite and 
small system size. 

Figure 3d shows the variation of 〈𝑅𝑔
2〉1/2 with 𝑀. As expected, 𝑅g increases with the degree of 

polymerization for both precise and disperse systems. As with the diffusion coefficients, the trends 
agree very well between precise and disperse systems. Disperse systems appear distributed slightly 
around the trend obeyed by precise systems; this is expected given the distribution of chains in each 
disperse system. Oddly, the values of 𝑀 which gave uncharacteristically narrow distributions also 
produced values of 𝑅g approximately half of that expected based on the trend from the other data. 

Although traditional polymer physics arguments suggest the scaling 〈𝑅𝑔
2〉1/2~𝑀1/2, the trend in 

Figure 3d appears visually linear. This is likely an artifact of the small range of 𝑀 values investigated. 

 

  

  
Figure 4: (a), (b), (c) Distribution of the radius of gyration, 𝑅𝑔, for 𝑀 = 2, 5, 9 and (d) variation in root mean 

squared 𝑅g with degree of polymerization for 𝑀 < 10. 

(d) (c) 

(a) (b) 
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Movie Caption 

The movie provides a visualization of diffusion in a disperse melt of Lennard-Jones 
polymers with an average chain length of 10. A single chain of each length is uniquely 
colored to easily visualize the relative diffusion rates of different length chains. 
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