Sequence Design of a Hydrophobic-Hydrophilic Polymer
Sally Jiao
ChE 210D Final Project, December 11, 2019

1 Abstract

The efficient inverse design of polymer and peptide sequences is an important and challenging
problem, enabling design of novel folded proteins, macrostructures, ligand-binding complexes, etc.
Here, a simple hydrophobic-hydrophilic polymer model is used to compare various optimization
strategies. The genetic algorithm converges more quickly than gradient descent, though a bottleneck
for both is the cost of simulations. Fitting a surrogate function may be able to significantly
accelerate the optimization.

2 Introduction

The design of protein or other polymer sequences to achieve specific structures and functional
properties is of great interest for a large variety of applications, including pharmaceuticals, indus-
trial formulations, surface-mediated interactions, etc. Simulations provide a promising route to
approach this problem, allowing for direct observation of molecular structures and ability to sweep
over a parameter of interest, and, when paired with an optimization algorithm, enable automated
molecular design. Inverse design through molecular simulation is, however, complicated by the
high dimensionality of the problem (the number of possible sequences grows exponentially with the
number of monomers), the difficulty of the forward evaluation (connecting sequence to either struc-
ture or a functional property), and the challenges related to accurate modeling of realistic polymers
and peptides. Simplified models can, however, reduce the complexity of the problem and allow
for faster forward evaluations, while at the same time elucidating underlying design rules. Here,
a simple model of a hydrophobic-hydrophilic (HP) polymer is used to test various optimization
algorithms.

3 Methods

3.1 Model

An off-lattice model by Stillinger et al. [B] was used to simulate a single HP polymer. Equation E]
gives the energy function. In this model, the bonded potential is an angle potential (where the angle
is defined as shown in the inset of Figure [l|), while bond lengths are fixed at 1. The Lennard-Jones-
like non-bonded term depends on &; which is 1 for a hydrophobic bead and -1 for a hydrophilic bead.
Thus, the coefficient of T f is -1 (strongly attractive) for hydrophobic-hydrophobic interactions, -
1/2 (weakly attractive) for hydrophilic-hydrophilic interactions, and 1/2 (weakly repulsive) for
hydrophobic-hydrophilic interactions. A cutoff of 2.5 was used for the non-bonded interactions.

v=%" iu —cosfiin) + 3 4G - 21+ €+ € + 566 0) (1)

8
i,k i+1<y

This model was initially simulated in two dimensions [3], but later work (e.g. finding minimum
energy structures) simulated the model in three dimensions [2], as in this present study.

3.2 Simulation

Configurational Bias Monte Carlo was used to
simulate the polymer, following the off-lattice
procedure in Frenkel and Smit [1] with a single
move: regrowth of one end of the polymer from
the middle bead (offset by 1 for the case of an
even number of beads). The end that is regrown
is chosen randomly. For each regrown bead, 20
trial segments are generated. All simulations
were run at a dimensionless temperature of 1.0,
unless otherwise noted. Acceptance ratios were
typically around 0.6 for a 15-bead chain and 0.8
for a 10-bead chain. Longer chains would thus
likely require a more extensive set of regrowth
moves (e.g. regrowing a shorter length of the
end of the chain instead of always regrowing an
entire half of the chain).

The end-to-end distance (the distance from
the first bead to the last bead) was saved every
10 steps. Because half of the polymer is regrown
every step, the end-to-end correlation “time” is

1.0 1 —— Simulated
Fit

Hydrophilic (§ = —1)
0.8

0.6
Hydrophobic (¢ = 1)

Cree(n)
S8

0.4 4
0.2 4

0.0 &“,__.r‘_,‘-—.,a-—,-~ T T N

0 200 400 600 800 1000
Number of steps, n

Figure 1: The autocorrelation function for the
end-to-end distance decays quickly. The corre-
lation “time” computed from an exponential fit is
4.3 steps.

very fast, as shown by the autocorrelation function for the end-to-end distance plotted in Figure m
An exponential, f(n) = exp(—n/7.), was fit to the autocorrelation function, yielding a correlation
“time” of 7. = 4.3 steps. As such, no additional advanced sampling techniques were used to simulate
this system. For all analyses and optimization algorithms, the end-to-end distance distribution was
generated by binning the end-to-end distances in bins of width 0.5 spanning 0 to 10.

3.3 Optimization
3.3.1 Gradient-free: genetic algorithm

A simple genetic algorithm was implemented:

1.

Ot > W

Initial population generation: an initial population of 10 chains was generated randomly (for
each chain, each bead was chosen to be -1 or 1, with equal probability).

. Fitness calculation: a fitness score is computed for each chain in the current population. A

chain’s fitness is the inverse of the relative entropy, 1/S,¢;, where S, is given in equation
and is the relative entropy between the end-to-end distribution generated by simulating that
chain and a target end-to-end distance distribution. A value of 0.001 was added to each bin
of the distributions for numerical stability. The simulations used to compute the fitnesses
were run for 5000 steps.

PT(Ree)
/PT(RGB) In mdl’%@e (2)

. Selection: out of the fittest 20%, two parents are randomly selected, weighted by fitness.
. Crossover: two children are generated from the parent sequences. See Appendix for details.
. Mutation: for each child, each bead in its sequence is randomly flipped with a probability

v = 0.1exp(—3/100) where j is the generation number.

. Repeat: the two children are added to the population and the process begins again with step

2, ending after 200 repetitions (i.e. 200 generations).

3.3.2 Gradient-based: gradient descent

If a derivative of the objective function (here, S, given in equation E) can be computed with
respect to the parameters (;), then gradient-based optimization methods can be used. Instead of
restricting & to the set —1, 1, they are here treated as continuous variables. The analytical form of
the derivative of the objective function is given in equation E where the subscript M denotes that
the quantity is computed in the ensemble of the simulated system and where the derivative of the
potential energy is given in equation #.

OSrer _ P<R>8U> B <8U> >
og " <<PM(R%) 06/ \O& /[y (3)
oU 1
A DI LT L) @)
j#Li—10+1

In order to compute the derivative, an initial simulation of 5000 steps was used to compute the
end-to-end distance distribution, and then another simulation of 5000 steps was used to compute

the derivatives. For each step, the gradient is computed, and the bead types £ are updated with:

& &G+ ’yagg:l where the step size is v = 0.1. The initial guess is randomly drawn for each bead

independently from a uniform distribution over [—1,1).

4 Results

End-to-end distributions for some exemplary
. . . N .
sequences are given in Figure P, where T in- 0.5

dicates a hydrophobic bead, and H indicates i i i -~ ::1155
a hydrophilic bead (thus, T5H5T5 is a chain 04 i Lo —e— TiHsTs
of length 15 with 5 hydrophobic bead on ei- . i

ther end surrounding a middle section of 5 Ll

hydrophilic beads). The distributions behave > ! “

as expected, with the completely hydrophobic s I

polymer the most collapsed, the polymer with 021

hydrophobic ends showing two preferred end-

to-end distances, presumably one in which the 0.1

hydrophobic ends are interacting, and the Tg H7

the most extended, likely due to repulsion be- 00

tween the two ends of the polymer. To gen-
erate these distributions, simulations were run
for 500,000 steps. While these long simulations
generate smooth end-to-end distance distribu-
tions, they are expensive, so shorter simulations

Figure 2: The end-to-end distance distributions
show that the completely hydrophobic polymer
! : o . is most collapsed, while a “diblock copolymer”
are used in the inner objective function / fit- i3 116 hydrophobic and half hydrophilic beads
ness evaluation of each optimization algorithm, is most extended. Shaded regions give the stan-

as described above. This comes with some loss . .
;] : dard deviation from three independent runs.
of accuracy, (see Figure H in the Appendix).

4.1 Optimizing with the genetic algo-
rithm

Figure Hi shows the results of genetic algorithm optimizations of four different target end-to-end
distributions: the distributions computed from simulations of T5H5T5 (hydrophobic ends), TgH7
(diblock copolymer), and THTHTHTHTHTHTHT (alternating), and a fictitious distribution
generated from three gaussian distributions. For each, the target distribution (blue circles) is com-
pared to the optimized distributions, both the one obtained from the fitness calculation performed
for the optimal sequence during the genetic algorithm run (orange dashed line) and one from a
longer simulations of the optimal sequence (green triangles). The diblock copolymer case is an in-
teresting test for the genetic algorithm, because both T3 H7 and H7Tg should be optimal sequences,
but when combined as “parents” to produce a child distribution, will result in a polymer with either
hydrophobic or hydrophilic ends, which should be much more collapsed (due to aggregation of the
ends) than the diblock copolymer (where the ends are repulsive). Still, the algorithm converges on
a reasonable approximation of the distribution. The algorithm performs less well for the fictitious
distribution, but it is unclear if any sequence would actually be able to generate such a distri-
bution. In this case, the slight differences between the “Optimized” and “Refined” distributions
suggest that another shortcoming of the algorithm is that the shorter simulation used to compute
the fitness function can return an overestimate of the true fitness due to error in the simulated
end-to-end distribution.

Figure Eii shows that the efficiency of the genetic algorithm is sensitive to parameters of the
algorithm, such as the mutation rate and the length of the simulation used to compute the fitness of a
given sequence. For these systems, a decaying mutation rate was more efficient than a fixed mutation
rate (further into the optimization, refinement of the already discovered minima is prioritized over
discovery of new minima).

«\ 0.50 i) 2.00
!) a) hydrophobic ends ~ —@— Target b) diblock copolymer ")
== Optimized

* -A- Refined
“
0.25 o W

1,75 - @ v fixed, Nseps = 2000 b) y decay, Nsteps = 2000) y decay, Nsteps = 5000

1.50

.

1.25

0.50 - £ 1.00
c) alternating d) fictitious

3
< 0.25-
T

0.00 -

0 100 200 100 200 100 200
Generation

Figure 3: i) The end-to-end distance distributions of the target and optimal (as found by the
genetic algorithm) distributions show good agreement for the cases where the target distribution
is known to be that of a specific sequence (a-c). A fictitious distribution (d) is more difficult for
the algorithm. ii) The trajectories (dots show the S,.; for each child in a given generation, black
lines show the most optimal S,¢; found up to that generation) show that the genetic algorithm is
sensitive to the parameters of the algorithm.

4.2 Optimizing with gradient descent

Figure Ei shows the results from four separate runs of gradient descent optimization where the target
distributions were distributions computed from simulations of a) His (completely hydrophilic) b)
T5HsTs (hydrophobic ends), ¢) THTHTHTHTHTHTHT (alternating), and d) TsH7 (diblock
copolymer). Each gradient descent run is half as expensive as one genetic algorithm run (each
genetic algorithm run is 200 generations with two simulations performed per generation, while each
gradient descent run is 100 steps with two simulations performed per step). However, in general,
gradient descent performs less well than the genetic algorithm. While it is able to converge to the
target distributions for some runs for some target distributions, for other targets (all hydrophilic
and diblock copolymer), none of the runs converge to the target. Examination of the trajectories of
the four runs shown in Figure Hii (the colors match the colors of the distributions) shows that for
these cases, none of the trajectories starting from randomly chosen initial sequences consistently
converge to the target sequence ; values (shown as dashed black lines) and in some cases, seem to
converge to the inverse. This phenomenon suggests the search space is non-convex. Starting from
an initial sequence that is designed to be close to the target sequence (blue and orange curves) does
lead to convergence to the target sequence (in most cases). Thus, when starting at a randomly
generated initial sequence, the algorithm is likely simply optimizing to a local minimum in S,.¢;.

. .

i) i)
0.50

a) hydrophilic —— Target | b) hydrophobic ends

- @ Runl

~A* Run2
- %- Run3

R S———
-1 . . = .

0 50 100 50 100 50 100 50 100
Hydrophilic Hydrophobic ends Alternating Diblock copolymer

Figure 4: i) Comparison of target (black) and optimized end-to-end distributions for four different
runs of the gradient descent algorithm, all starting from randomly generated initial sequences
(green, red, purple, brown) shows that in general, gradient descent is not able to converge to
the target distribution under these conditions. ii) The trajectories of the algorithm starting from
those randomly generated initial sequences (green, red, purple, brown) show that the algorithm
likely is converging to a local minimum, as opposed to the global minimum (black dashed lines).
Initializing the algorithm with a guess that is closer to the globally optimal sequence produces
better convergence (blue, orange).

The animation shows how an optimization algorithm might change the sequence of the hydrophobic-
hydrophilic polymer in order to more closely approximate the target distribution. For each sequence
(three are shown in this animation), a simulation is run and the end-to-end distribution becomes
more refined / smoother the longer the simulation. Once the simulation finishes, the algorithm
computes the distance between the two distributions and changes the sequence accordingly and a
simulation of the new sequence begins. I do not own the music played in the animation.

References

[1] D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, 2002.

[2] S. Y. Kim, S. B. Lee, and J. Lee. Structure optimization by conformational space annealing
in an off-lattice protein model. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics, 72(1):1-6, 2005.

[3] F. H. Stillinger, T. Head-gordon, C. L. Hirshfeld, T. B. Laboratories, and M. Hill. Toy model
for protein folding. 48(2), 1993.

I would like to acknowledge Pratyush Kumar, Koty McAllister, William Jiao, Nicholas Yang,
and Scott Shell for helpful discussions and ideas.

5 Appendix

5.1 Genetic algorithm details

Fitness function: 1/S5,.; is used as the fitness function and maximized (as opposed to minimizing
Sret) so that the probability that a sequence is chosen as a parent can be related directly to its
fitness.

Crossover: After the crossover step, one child has the same sequence as one of its parents, up
until a randomly selected crossover point, after which it has the same sequence as its other parent.
The opposite is true for the other child.

5.2 P(r) uncertainty as a function of simulation length

05
—8— Nseps = 1000
~®— Nsteps = 5000
0.4 —8— Nyteps = 10,000
—8— Nyteps = 50,000
—.—

Nsteps = 500,000

0.3

P(Ree)

0.2 A

0.1 A

0.0 =

Figure 5: The uncertainties in the generated end-to-end distance distributions grow as the number
of steps decreases, as expected, for the T5 H5T5 polymer. At ngeps = 5000, the doubly peaked
structure is still captured.

5.3 Finding a surrogate function

In both the optimization algorithms, the expense of the forward pass (the simulation) was one of
the limiting factors. Finding a surrogate function that can accurately estimate P(r) or S,¢ and
thus can serve as a much faster substitute for running a simulation can significantly speed up the
optimization, allowing us to search a much larger fraction of design space. However, finding this
surrogate function is non-trivial. Figure fj shows the results of fits of S, (computed between a
simulated distribution and the reference end-to-end distribution of 75H575) with linear combina-
tions of various features of the sequence (e.g. number of hydrophobic groups, cluster distribution of
hydrophobic beads etc.) for a dataset comprising 100 randomly generated sequences and their dis-
tributions simulated for ngeps. Simply fitting Sy¢; to a linear combination of the sequence (panel
a) (3, ci& where ¢; are the coefficients of the linear fit) actually produces less error (measured
as RMSD) than fitting (panel b) to the number of hydrophobic groups or (panel c¢) to a linear
combination of a “coarse-grained” representation of the sequence, where each set of three beads is
represented by 1 if there are more hydrophobic beads or -1 if there are more hydrophilic beads.
However, a linear fit of a vector describing the cluster distribution of hydrophobic and hydrophilic

1.25

1.001 o) . oo
SOy * SENn ¢
0.75 1 2 ® omzamED © ©
o9 come @ e o
0.50 1 P~} o @m @0
Qo? ° o0 oo

e ¢ oo
0.25 A RMSD=0.13 J/ RMSD=0.153

a) sequence b) no. hydro. grps.

1.25

1.00 1 X0 ©0%.26 _ o

o
U
o

Predicted Se
L4
%
A
‘9
u
B
o @

| e P
X ‘.\ e o%e
9

&

e
N
%

RMSD=0.161 (3 RMSD=0.126
C) max. grps. d) cluster dist.

0.00 ¥—— : . - — . , .
0.00 025 0.50 075 1.00 1.25 025 050 0.75 1.00 1.25
Simulated Se

Figure 6: Fits of S, to linear combinations of various features generated from the sequence (see
text for details) shows that a linear fit to the sequence itself outperforms many naively engineered
features.

groups gives slightly less error than just a fit of the sequence. The vector that represents the “clus-
ter distribution” described in the text is a concatentation of two 15-element vector. The first is the
cluster distribution for hydrophobic beads. The second is the cluster distribution for hydrophilic
beads. For each, the element z; in the distribution is the number of clusters of length ¢ in the
sequence, where a cluster is a set of consecutive hydrophobic or hydrophilic beads.

5.4 Other improvements

1. The genetic algorithm actually converges to a fairly optimal sequence relatively quickly, and
therefore ends up repeating sequences. Currently, the algorithm has no “memory” of past
sequences and simply recomputes a fitness by running another simulation. Thus, a simple way
to make the algorithm more efficient would be to keep some memory of sequences generated
and the computed fitnesses (a hash table can be used for fast lookups). A possible downside is
that repeated fitness measurements for the same sequence reduce the impact of measurement
error. At the very least, however, the lookup table could be used to combine all measurements
of the fitness of a sequence into a more refined estimate. It could also provide a way to address
another issue: the genetic algorithm does not currently understand that a sequence and its
reverse are identical and therefore should have the same fitness. Keeping a lookup table
and entering a sequence and the reverse (symmetrically identical) sequence with the fitness
computed a single time for one of those sequences would somewhat reduce the search space.

2. Currently, the gradient descent step traverses some fixed step size « in the direction of steepest
descent. Alternatively, a line search could be used, though the performance of the line search
in cases where there is measurement error would need to be evaluated.

	Abstract
	Introduction
	Methods
	Model
	Simulation
	Optimization
	Gradient-free: genetic algorithm
	Gradient-based: gradient descent

	Results
	Optimizing with the genetic algorithm
	Optimizing with gradient descent

	Appendix
	Genetic algorithm details
	P(r) uncertainty as a function of simulation length
	Finding a surrogate function
	Other improvements

