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Abstract: Free energy calculations are a powerful molecular simulation technique with many 

applications to studying biomolecular systems. Such techniques are useful for predicting protein-

ligand binding properties as well as understanding the mechanisms by which amino acid mutations 

alter a protein’s behavior. Critical to correctly measuring the effects of amino acid mutations on a 

folded peptide’s stability are accurate estimations of amino acid solvation energies. Here, I attempt 

to match experimental and previous results for the relative solvation free energies of alanine, 

isoleucine, and serine as members of a capped GXG tripeptide, representing the unfolded protein 

state. Using the Bennett Acceptance Ratio method, I obtain estimates which are in poor agreement 

for isoleucine, but good agreement for serine. Potential undersampling effects resulting in poor 

agreement are further discussed. 

Introduction: The ability to predict via computational methods the effects of amino acid 

mutations on the properties of a protein has widespread applications for drug discovery and protein 

engineering. While high throughput library creation and screening (directed evolution) methods 

have been very successful in experimentally identifying beneficial amino acid substitutions for a 

number of applications, designing protein-

protein interactions is much more 

challenging due to the difficulty in 

designing an adequate screen. Free energy 

calculations coupled with in silico amino 

acid mutation present an attractive method 

to address this gap, enabling the high 

throughput computational screening of 

mutants for desirable protein binding 

properties such as free energies of binding. 

Computing relative binding properties of 

whole proteins, however, is beyond the 

scope of the project because the simulation 

time required to ensure adequate 

equilibration and sampling of each 

alchemical state is very high. Instead, I 

compute the relative solvation free energies of different amino acids by modeling solvated and in 

vacuo GXG peptides, where X is mutated from alanine to isoleucine. Such quantities are still very 

valuable to compute given their contribution to the effects of residue mutations on protein 

stability1.  

Figure 1. The overall goal of this work is to implement an 

alchemical simulation workflow to estimate the relative 

solvation free energies of Alanine to other amino acids, e.g. 

isoleucine.  These quantities are calculated by running two sets 

of simulations - one in solvent and one in vacuum. 
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The most widely used simulations-based approach to computing relative free energy changes in 

protein systems is the alchemical method2, which couples interaction energies to a state parameter, 

λ, which varies from 0 to 1 to completely turn on or off certain interactions between atoms in a 

system. Generally, average system energies (or 〈
𝑑𝑈(𝑜𝑟 𝐻)

𝑑𝜆
〉) are collected for equilibrium states 

spanning λ = [0,1] and are used to estimate a free energy difference between the two states by a 

method such as histogram reweighting3, thermodynamic integration4, or Bennett’s Acceptance 

Ratio (BAR) method5. 

Methods: The first step in setting up these simulations was the construction of topology files for 

the start and end state. For these simulations, a dual topology approach was used, in which all state 

topologies have a capped G(X/Y)G peptide with a middle hybrid residue that contains all atoms 

from both the start and end sidechain. Dummy atoms are designated to make the residue equivalent 

to residue X in state A and residue Y in state B. As a result, all inter- and intramolecular interactions 

involving the changing sidechain atoms are either turned completely ‘ON’ or completely ‘OFF’ 

from state A to state B. 

Practically, doing this requires the addition of hybrid residues with Lennard-Jones parameters, 

partial charges, and masses to an existing force field. It further requires the construction of 

topology files capturing the dual topology system setup. Fortunately, topologies and force field 

parameters for all possible GXG mutations in several force fields (AMBER99SB, 

AMBER99SB*ILDN, Charmm36, Charmm22, and OPLS AA/L) were freely available from the 

de Groot lab at the Max Planck Institute6.  

System setup: The constructed topology file for the alanine-isoleucine mutation as well as the 

Amber99SB force field from their work were used in this project. All energy minimization and 

dynamics were done in GROMACS. For the Ala → Ile mutation, the atoms unique to Ile are 

designated dummy atoms. See Ref. 6 for details on how the topologies were constructed. A cubic 

simulation box (3.559 nm per side) with periodic boundary conditions centered around the peptide 

was solvated with 1418 simple point charge (TIP3P) water molecules. 

Simulation parameters: The GROMACS simulation package was used to perform energy 

minimization and molecular dynamics. When free energy differences were estimated using slow 

growth thermodynamic integration, only one system was minimized and equilibrated prior to 

production MD. To set up free energy calculations using BAR, multiple systems with differing 

values of λ were constructed and minimized and equilibrated prior to production MD of each 

system independently.  

Non-bonded interactions: Lennard-Jones interactions were implemented with a potential switching 

function such that ULJ was shifted smoothly to 0 between 1.0 nm and 1.2 nm (where ULJ = 0). A 

Verlet cutoff scheme for generating interacting pair lists was used with a cutoff distance of 1.0 nm. 

Dispersion corrections to the energy and pressure were applied to compensate for cutoff-induced 

errors. 

Electrostatics were modeled using Particle Mesh Ewald (PME) with 0.1 nm Fourier spacing and 

an interpolation order of 6. A cutoff of 1.2 nm was used for these interactions. 
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Temperature and Pressure coupling: NVT, NPT, and production simulations were performed using 

Langevin dynamics with a friction coefficient of 0.5 ps-1. When required, constant pressure was 

maintained using the Parrinello-Rahman barostat with compressibility set at 4.5e-5 bar-1 and a time 

constant of 1 ps for pressure coupling. 

Constraints: For all equilibration and production MD, all bonds were constrained using the LINCS 

algorithm. This is necessary because bond stretching contributions need to be explicitly accounted 

for in free energy calculations. 

System minimization, equilibration, and production simulation: At each value of λ, the system 

was energy minimized first by steepest descent for 100 steps followed by 100 steps of conjugate 

gradient minimization. Though max force tolerances of 1.0e-5 were set, these were never achieved 

for the solvated or vacuum system – the maximum force on any particle was < 1000 N in all 

simulation starting configurations. Following energy minimization, a 100 ps NVT equilibration 

using Langevin dynamics with a friction coefficient of 0.5 ps-1 was performed. An additional 500 

ps NPT equilibration was performed prior to a 3 ns production period for data collection. During 

each production simulation, changes in the Hamiltonian ΔΗ(𝜆1, 𝜆2) for adjacent λ values were 

collected every 1000 time steps for use in the free energy calculation. 

Free energy estimation: Both non-bonded and bonded interactions involving the alchemical 

atoms were parametrized by λ, yielding potentials of the form: 

Bond, angle, improper torsion potential: 

𝑈𝑏 =
1

2
[(1 − 𝜆)𝑘𝑏

𝐴 + 𝜆𝑘𝑏
𝐵][𝑏 − (1 − 𝜆)𝑏0

𝐴 − 𝜆𝑏0
𝐵]2   (1) 

𝑘𝑏
𝑖  are force constants for the bond/angle/improper torsion and 𝑏0

𝑖  are the equilibrium bond 

lengths/angles. 

Proper torsion potential: 

𝑈𝑑 = [(1 − 𝜆)𝑘𝑑
𝐴 + 𝜆𝑘𝑑

𝐵](1 + cos[𝑛𝜙𝜙 − (1 − 𝜆)𝜙𝑠
𝐴 − 𝜆𝜙𝑠

𝐵]) (2) 

𝑘𝑑
𝑖  are force constants for the dihedral, 𝜙𝑠

𝑖 is the equilibrium angle in state I, and 𝑛𝜙 is an integer. 

Softcore potentials: 

𝑈𝑠𝑐(𝑟) = (1 − 𝜆)𝑉𝐴(𝑟𝐴) +  𝜆𝑉𝐵(𝑟𝐵)     (3) 

𝑟𝐴 = (𝛼𝜎𝐴
6𝜆𝑝 + 𝑟6)

1

6       (4) 

𝑟𝐵 = (𝛼𝜎𝐵
6(1 − 𝜆)𝑝 + 𝑟6)

1

6      (5) 

Here, α was set to 0.5 and p set to 1. 𝜎𝑖  is the van der Waals radius of an atom in state i. In 

simulations, it is set as a parameter to 0.3 to be the radius for hydrogen atoms, which cause issues 

with no LJ interaction. 𝑉𝑖(𝑟𝑖) is the standard form of the Lennard-Jones or Coulomb potential. 



4 

 

Since atoms are disappearing and appearing at the same time in the alanine to isoleucine 

transformation, Lennard Jones and electrostatic interactions had to be transformed at the same 

time, necessitating a softcore form for the electrostatic potential in contrast to the conventionally 

used linear scaling. All interactions were decoupled at the same rate. Initially, λ values in 

increments of 0.1 between 0.0 and 1.0 were used, but these values were too few for the desired 

precision of ± 0.2 kJ/mol. The final set of values used for all decoupling was λ = [0.0, 0.1, 0.15, 

0.2, 0.3, 0.4, 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1.0]. The estimated free energy 

change between adjacent states was computed using the BAR algorithm: 

𝛽𝛥𝐺 = 𝑙𝑛
〈

1

1+𝑒−𝛽𝛥𝐻(𝒑𝑁,𝒒𝑁)+𝛽𝛥𝐺
〉0 

〈
1

1+𝑒𝛽𝛥𝐻(𝒑𝑁,𝒒𝑁)−𝛽𝛥𝐺
〉1

;  𝛥𝐻 = 𝐻(𝜆1 − 𝜆0)   (6) 

This equation was solved iteratively using the bisect method. I’ll note that while I did write my 

own BAR implementation for processing trajectories from OpenMM, I did not have time to recode 

this for processing Gromacs output and used the Gromacs BAR implementation to get my results. 

My implementation along with a script comparing it to standard implementations for computing 

the chemical potential of liquid argon is included in my submission. 

An error estimate for each adjacent ΔG was computed by splitting each 3 ns production simulation 

into five blocks, yielding five ΔG values from which the average and variance were computed. 

Standard deviations were successively propagated as 𝜎𝑠𝑢𝑚 = √𝜎1
2 + 𝜎2

2. 

We then get the relative solvation free energy from Eqn. 7. 

𝛥𝛥𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛,𝐴→ 𝐼  =  𝛥𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑒𝑑,𝐴→𝐼 –  𝛥𝐺𝑣𝑎𝑐𝑢𝑢𝑚,𝐴→𝐼  (7) 

It wasn’t possible to barostat the vacuum system composed of only once molecule without stability 

issues, so production simulations were done in the NVT ensemble. In the vacuum/ideal gas state, 

the PV term is invariantly equal to RT, cancelling out in the free energy difference expression, so 

𝛥𝐴𝑣𝑎𝑐𝑢𝑢𝑚,𝐴→𝐼 = 𝛥𝐺𝑣𝑎𝑐𝑢𝑢𝑚,𝐴→𝐼 . 

Table 1. Comparing my results to experiment and prior literature shows an unfortunate lack of agreement for the 

relative free energy of solvation of isoleucine compared to alanine, but surprisingly good agreement for the less 

dramatic Ala to Ser transformation. All energies are in units of kT. Errors are one standard deviation. 

 

Results: The key result of this work is the predicted relative solvation free energy of two amino 

acid residues as they appear as part of a polypeptide chain. Table 1 contains this result, with 

comparisons of my measured value using both BAR and slow growth to both experimental and 

prior simulation values. Note that the previous study estimating the relative solvation free energies 

Mutation Experiment Literature This work 

(BAR) 

This work 

(My BAR) 

This work 

(Slow 

growth) 

GAG to 

GIG 

0.21 ± 0.02 – 

0.057 

0.19 ± 0.02 – 0.057 -0.59 ± 0.16 -0.88 ± 0.16 1.84 ± 1.81 

GAG to 

GSG 

-7.00 ± 0.02 – 

0.057 

-6.75 ± 0.02 – 0.057 -7.19 ± 0.21 -6.58 ± 0.51 N/A 
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of amino acid side chains did so using the chemical analog of the isolated sidechains (e.g. n-butane 

for isoleucine), not a capped GXG peptide. 

In the process of generating these results, I experienced firsthand the tricky nature of achieving 

high precision in free energy simulations. For a system this large (>5000 atoms in the solvated 

case), undersampling is a potential pitfall, as is the inadequate phase space overlap of simulations 

at different λ values used to estimate ΔG. Both errors were apparent in my first attempt at 

computing 𝛥𝛥𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛,𝐴→ 𝐼, and are especially evident in the slow-growth estimate. 

Unfortunately, it is likely that I needed to increase the number of intermediate states samples even 

further for GAG to GIG, particularly towards λ = 1 (Figure 2). In contrast, free energy changes 

between intermediate states were much smaller for the alanine to serine mutation (Figure 2). 

 

Figure 2. (Left) Stepwise and cumulative delta G for GAG to GIG (Top) and GAG to GSG (Bottom) in solvated 

system. (Right) Same metrics plotted for the vacuum system. Error bars are ± one standard deviation. 

Discussion: In addition to simulation/sampling quality, there are many possible reasons why free 

energy estimates may not agree with prior work or experiment. For example, a different force field 

with different parameters, different implementations of the non-bonded interactions, and of course 

the fact that my values are calculated for a capped GXG peptide in contrast to the isolated sidechain 

molecule. Ultimately, my goal in this project was to obtain statistically high quality free energy 

estimates by using good simulation practices. Obtaining precise estimates should undermine the 
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possibility that any observed differences between my results and others are due to undersampling 

or an unequilibrated system. However, the relative failure and success of the Ala to Ile and Ala to 

Ser mutations while obtaining similar levels of precision is puzzling.  

Assuming the fidelity of the force field parameters and the way interactions were calculated, the 

most apparent source of error is the relative “difficulty” of the transformations taking place. 

Alanine to isoleucine involves the appearance of three C atoms with accompanying H’s, in contrast 

to alanine to serine which requires only the appearance of an OH group. More difficult transitions 

will require more intermediate states, as evidenced by the higher stepwise free energy changes in 

Figure 2 compared to Figure 3. I expect that adding intermediate states to keep stepwise ΔG’s ≤ 

0.5 kT would improve the accuracy of my ΔΔGsolv., A→I. Future work diving deeper into what drives 

these relative free energy changes (e.g. enthalpic or entropic effects) will make a nice addition to 

these efforts as well. 

Conclusions: In this work, the relative solvation free energies of two peptides, GIG and GSG are 

estimated using explicit solvent molecular dynamics simulations and the Bennett Acceptance Ratio 

method of free energy estimation. Significant inaccuracy of the GIG estimate compared to the 

GSG estimate suggests that inadequate phase space overlap between intermediate states in the 

GIG, likely exacerbated by the large number of alchemical atoms simultaneously changing, is the 

primary reason for this inaccuracy, though I cannot rule out issues in the force field 

parametrization. The fact that the free energy estimates were obtained with similar levels of 

precision, however, undermines this argument and warrants further investigation. 
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