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1 Abstract

In this work I compute the Helmholtz free energy of solvating a LJ particle in a LJ fluid using
Thermodynamic Integration (TI) [1] and Bennett Acceptance Ratio (BAR) [2] techniques. The
free energies are computed at a reduced density (ρ∗) and reduced temperature (T ∗) of 0.8 and
3.0, respectively. The simulations were performed using 240,480,960, and 1920 LJ particles
(ε = 1, σ = 1) in order to study the system size effects. The reduced free energies computed
(for N=480) from TI and BAR are 12.11±0.03 (12.11 ± 0.03, using bootstrapping) and 12.170
± 0.01 (bootstrapped statistics), respectively. Accounting for finite size effects too the true free
energy of solvation is 12.11 ± 0.03.

2 Solvation Free Energy

Solvation free energy is the free energy change associated with transferring a solute molecule
from an ideal gas phase to a solution phase at a given temperature, pressure, and solute concen-
tration in solution as shown in Figure 1. Solvation free energy computations play an important
role in computing solubilities, partition coefficients, activity coefficients and Henrys law con-
stants.
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Figure 1: The Physical Reaction of Solvation

2.1 Force Field

I choose a LJ system for ease of implementation and focus on the algorithms to compute the free
energies. The force field used is a LJ/cut/shift force field given by equation 2 with ε and σ set
to 1 in equation 1. A soft core LJ potential given by equation is used to turn on the interaction
(by varying the λ parameter) between the solute and its environment. The LJ potential is cut
at rc=2.5.

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(1)

U(r) = ULJ(r)− ULJ(rc) (2)

ULJ−Soft(r;λ) = 4λ

(
1

(α(1− λ)2 + r6)2
− 1

α(1− λ)2 + r6

)
(3)

ULJ−Soft(r;λ) = ULJ−Soft(r;λ)− ULJ−Soft(rc;λ) (4)
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2.2 Simulations

I perform Monte Carlo simulations in the NVT ensemble to compute the Helmholtz free energies
with maximum displacements between 0.11 and 0.15 giving acceptance ratios between 45-55%.
A equilibrium period of 50000 MC sweeps (conservatively high) and a production period of
250000 MC sweeps data collecting frequency of 15 MC sweeps (based on autocorrelation time
studies as shown in Appendix B) is used.

TI

The free energy of solvation using thermodynamic integration (TI) is given by equation 5

∆F =

∫ 1

0

〈
dU

dλ

〉
λ

dλ (5)

In the MC code I hardwire 〈dU/dλ〉. I use the Guass Quadrature method (45 points, see Table
1 for sensitivity analysis with # of Gauss points) to compute the integral in equation 5. In order
to test my framework I compute the TI plot using MC simulations and using LAMMPS at the 45
Guass points. Figure 2 shows the comparison. As seen the TI plots are in excellent agreement.
The reduced Helmholtz free energy computed using TI is 12.01 ± 0.03 (see Appendix A for
error analysis).

Figure 2: TI plots comparison, N=240

Table 1: Free energy variation with number of points used for integration

# of Gauss points ∆A

15 12.03 ± 0.05

45 12.01 ± 0.03

Finite Size Effects

In order to check the system size dependence of the solvation free energy, I compute the free
energies for N=240, 480, 960, and 1920 LJ particles. Figure 3 shows a plot of the free energy
vs inverse of simulation box length. As seen for N=480,960 and 1920, the solvation free energy
is independent of system size.
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Table 2: Free energy variation with size of simulation box

N ∆A

240 12.01 ± 0.03

480 12.11 ± 0.03

960 12.13 ± 0.03

1920 12.11 ± 0.03

Figure 3: ∆Asolv vs 1/L

BAR

The free energy difference between two states using BAR is computed by solving equation 6

ni∑
i=1

1

1 + exp(ln(ni/nj) + β∆Uij − β∆A))
−

nj∑
j=1

1

1 + exp(ln(nj/ni)− β∆Uji + β∆A))
= 0 (6)

where:

1. i,j are the two states

2. ∆Uij is the potential energy of a frame sampled in the ith state evaluted using the potential
energy function of the jth state

3. ni, nj are the number of independent samples in state i and j, respectively

4. ∆A is the Helmholtz free energy difference between the two states

I use the same Gauss points and add the end states to compute the free energy of solvation
using BAR. Figure 4 shows the ∆As for between successive states. Summing these free energy
differences gives the solvation free energy which amounts to 12.00±0.01 which is within error
of the free energy estimate computed using TI. I have used bootstrapping for computing error
bars for the BAR results.
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Figure 4: ∆As between successive states computed using BAR, N=240

3 Results and Conclusion

Table 3 summarizes the free energy of solvation results. In order to compare the error bars I
bootstrap the TI results too in order to make a reasonable comparison.

Table 3: Free energy variation with size of simulation box

N ∆A

T.I. T.I. (w/ bootstrap) BAR (w/ bootstrap)

30 samples 200 samples 30 samples 200 samples

240 12.01 ± 0.03 12.01 ± 0.03 12.02 ± 0.03 12.00 ± 0.02 12.00 ± 0.01

480 12.11 ± 0.03 12.11 ± 0.03 12.11 ± 0.04 12.17 ± 0.02 12.17 ± 0.01

Thus I have successfully computed the reduced Helmholtz free energy of solvation of a LJ
particle in a LJ fluid accounting for finite size effects using TI. I have also computed the same
using BAR (with a bootstrapped error analysis). As seen BAR performs marginally better than
TI (by comparing bootstrapped errors).

4 Caption for the movie

A fully coupled LJ particle (red) solvated in a LJ fluid (grey)
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Appendix A

Error Analysis

This appendix explains how I compute my error bars on the values that I report. Let X be the
property whose average I need to compute. Then X is an estimate of 〈X〉,

X =
1

n

n∑
i=1

Xi (A.1)

and n is the number of independent samples.

The standard error of the mean (σX) is given by

σ2
X

=
σ2X
n

(A.2)

where, σ2X is the variance in X.

In the thermodynamic integrations that I perform, I compute the integral (I) using a Gauss
Quadrature approach. For k Gauss points (λi, λ2, ..., λk),

I =
k∑
i=1

wi · fi (A.3)

where wi are the weights given by the Gauss quadrature framework, and fi is
〈
dU
dλ

〉
λi

. Therefore,

I =

k∑
i=1

wi · fi (A.4)

and,
σ2
I

= w2
i · σ2fi (A.5)
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Appendix B

Autocorrelation Time

This appendix explains how I compute my autocorrelation times. Let A be the property whose
autocorrelation time I need to compute. The slope of σ2

A
plotted as a function of σ2A/ttot where:

1. σ2
A

= variance of the Ai

Ai = average A of each block i

2. ttot=length of each block i

3. σ2A=variance of A over entire simulation trajectory

Figure B.1: Property (A) is U ,i.e., potential energy

Figure B.2: Property (A) is dU/dλ
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Figure B.3: Property (A) is ∆Uij
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