
A Computational Temporal Logic for
Superconducting Accelerators

Georgios Tzimpragos

UC Santa Barbara

gtzimpragos@cs.ucsb.edu

Dilip Vasudevan

Lawrence Berkeley National Lab

dilipv@lbl.gov

Nestan Tsiskaridze

UC Santa Barbara

nestan@cs.ucsb.edu

George Michelogiannakis

Lawrence Berkeley National Lab

mihelog@lbl.gov

Advait Madhavan

National Institute of Standards and

Technology & University of Maryland

advait.madhavan@nist.gov

Jennifer Volk

UC Santa Barbara

jevolk@ece.ucsb.edu

John Shalf

Lawrence Berkeley National Lab

jshalf@lbl.gov

Timothy Sherwood

UC Santa Barbara

sherwood@cs.ucsb.edu

Abstract
Superconducting logic offers the potential to perform com-

putation at tremendous speeds and energy savings. How-

ever, a “semantic gap” lies between the level-driven logic

that traditional hardware designs accept as a foundation

and the pulse-driven logic that is naturally supported by

the most compelling superconducting technologies. A pulse,

unlike a level signal, will fire through a channel for only an

instant. Arranging the network of superconducting compo-

nents so that input pulses always arrive simultaneously to

“logic gates” to maintain the illusion of Boolean-only evalu-

ation is a significant engineering hurdle. In this paper, we

explore computing in a new and more native tongue for

superconducting logic: time of arrival. Building on recent

work in delay-based computations we show that supercon-

ducting logic can naturally compute directly over temporal

relationships between pulse arrivals, that the computational

relationships between those pulse arrivals can be formalized

through a functional extension to a temporal predicate logic

used in the verification community, and that the resulting

architectures can operate asynchronously and describe real

and useful computations. We verify our hypothesis through

a combination of detailed analog circuit models, a formal

analysis of our abstractions, and an evaluation in the context

of several superconducting accelerators.

ACM acknowledges that this contribution was authored or co-authored

by an employee, contractor, or affiliate of the United States government.

As such, the United States government retains a nonexclusive, royalty-free

right to publish or reproduce this article, or to allow others to do so, for

government purposes only.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00

https://doi.org/10.1145/3373376.3378517

CCS Concepts •Hardware→ Emerging technologies;
• Theory of computation → Modal and temporal lo-
gics; • Computer systems organization → Architectu-
res.

Keywords superconducting logic; temporal logic; race logic.

ACM Reference Format:
Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George

Michelogiannakis, Advait Madhavan, Jennifer Volk, John Shalf,

and Timothy Sherwood. 2020. A Computational Temporal Logic for

Superconducting Accelerators. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20), March 16–20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3373376.3378517

1 Introduction
Superconductivity is the phenomenon wherein the electrical

resistance of a material disappears as it is cooled below a

critical temperature. Computing with such superconducting

materials offers the promise of orders of magnitude higher

speed and better energy efficiency than transistor-based sys-

tems [11]. Unfortunately, while there have been tremendous

advances in both the theory and practice of superconducting

logic over the years, significant engineering challenges con-

tinue to limit the computational potential of this approach.

In contrast to semiconductor logic, where logic cells are

combinational and their output is (to first order) a pure func-

tion of the levels of all the inputs present at any time, the

majority of Single Flux Quantum (SFQ) logic
1
gates are se-

quential and operate on pulses rather than levels. Because

pulses travel ballistically rather than diffusively through a

channel, once they have transited there is no “record” of

their value that can be used in downstream computations.

1
SFQ technology and its variants have been dominant in superconductor

digital technology for more than three decades with verified speeds of

hundreds of GHz for simple digital circuits [4].

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

435

https://doi.org/10.1145/3373376.3378517
https://doi.org/10.1145/3373376.3378517
https://doi.org/10.1145/3373376.3378517

Implementing a chain of Boolean operations thus requires

the very careful layout and synchronization of timing along

each and every path with picosecond-level precision [27].

While some of the challenges in adopting such a novel

technology are inherent to the nature of the exotic materials

and environment, others appear to be due to a mismatch

between our computational abstraction and what the de-

vices actually provide. Because most superconducting logic

designs rely on discrete voltage pulses driven by the trans-

fer of magnetic flux quanta, supporting the combinational

abstraction provided by traditional logic requires significant

design effort and results in unavoidable overheads. If we in-

stead think about these pulses as the natural representation

of data in a superconducting system, the natural language
for expressing computations over that data would be one

that could precisely and efficiently describe the temporal

relationships between these pulses. Here, we can draw upon

two distinct lines of research, both currently disconnected

from superconducting.

First, recent work has shown that delay-based encoding

has both impressive computational expression and practi-

cal utility in implementing important classes of accelera-

tors [19, 33] – not to mention the interesting connections

to neurophysiology discovered by J. E. Smith [25]. The prin-

ciples of the delay-coded logic described in that prior work

apply directly to problems in superconducting. However,

the fact that its primitive operators have been so far imple-

mented only in CMOS under specific assumptions – e.g.,

edges are used to denote event occurrences – makes their re-

alization in the much different RSFQ technology potentially

challenging.

Second, we can leverage the long history of work in tem-

poral logic used for expressing temporal relationships in

reasoning and verification. While temporal logic systems

(e.g. Linear Temporal Logic) deal with the relationship of

events in time, they are fundamentally predicate logics that

allow one to evaluate truth expressions (True / False) over

some set of temporal relationships. We instead need a tem-

poral logic with computational capabilities that takes events
as inputs and creates new events as outputs based on the

input relationships.

To explore these issues we present a new computational
temporal logic (which in fact subsumes LTL) that gives clear,

precise, and useful semantics to delay-based computations

and relates them to existing temporal logics. This approach

allows us to trade implementation complexity for delay, re-

alize superconducting circuits that embody this new logic,

and create useful new architectures based on these building

blocks that encapsulate the potential of those circuits. To

the best of our knowledge, this is the first time that tempo-

ral logic is used to specify computations. Overall, the main

contributions of this paper are:

• We extend classical temporal predicate logic to a com-

putational temporal logic to formally express delay-

based computations. This extension provides the needed

abstractions to capture the capabilities of our new op-

erators and it sets the foundation for the construction,

analysis, and evaluation of large-scale temporal sys-

tems.

• We design circuits that implement these primitive tem-

poral operators in RSFQ and evaluate their functional-

ity and performance with SPICE-level simulations.

• We describe a way of combining these temporal opera-

tors into larger self-timed superconducting accelerator

architectures. Our data-driven self-timing approach

enables the operation of our RSFQ designs without the

need of clock trees even in the most general case.

• We validate our hypothesis through (a) a functional

verification of three RSFQ accelerators at the SPICE

level, (b) a performance comparison between our su-

perconducting designs and their CMOS counterparts

– showing more than an order of magnitude perfor-

mance improvements – and (c) a timing analysis neces-

sary to identify timing constraints that may affect the

design flow of superconducting temporal accelerators.

• We open-source
2
our temporal primitives and accel-

erator designs for quick use and reference.

2 Background
2.1 Computing with Superconductors
Superconductivity was discovered in 1911 by K. Onnes, who

observed that the resistance of solid mercury abruptly disap-

peared at the temperature of 4.2K [14]. Four decades later, D.

A. Buck demonstrated the first practical application of this

phenomenon – the cryotron [2] – and soon after, B. Joseph-

son established the theory behind the Josephson effect [24],

which led to the fabrication of the first Josephson junction

(JJ) in the subsequent years.

A JJ is made by sandwiching a thin layer of non supercon-

ducting material – an electronic barrier – between two layers

of superconducting material. JJs are capable of ultrafast (as

low as 1ps), low-energy (to the order of 10
−19

J) switching by

exploiting the Josephson effect: electron pairs tunnel through

the barrier without any resistance up to a critical current. At

the critical threshold, a JJ switches from its superconducting

state to a resistive one and exhibits an electronic “kickback”

in the form of magnetic quantum flux transfer – observable

as a voltage pulse on the output. To enable stateful circuit

operation the unit of flux can be temporarily stored in a

composite device known as the superconducting quantum

interference device (SQUID), which is built as a supercon-

ducting loop interrupted by two serial JJs and is common to

many superconducting circuits.

2https://github.com/UCSBarchlab/Superconducting-Temporal-Logic

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

436

https://github.com/UCSBarchlab/Superconducting-Temporal-Logic

Over the years, several ambitious designs of superconduct-

ing ALUs [29, 30] and microprocessors [1, 7, 34] have been

presented in an effort to capitalize on the promise of super-

conductors [12]. The majority of these implementations are

primarily based on simplified architectures, bit-serial pro-

cessing, and on-chip memories realized with shift-registers.

Bit-serial processing has been selected over bit-parallel ap-

proaches due to its lower hardware cost and complexity.

However, this design choice compromises the advantage

speed of SFQ technology [4] as the number of execution

cycles per instruction increases with the number of bit slices.

Moreover, the use of shift register-based memories – given

the lack of dense, fast, and robust cryogenic memory blocks

– seems to be the only reasonable choice at the moment; still

not a viable solution though for large-scale designs
3
.

More recently, interest has increased in the development

of superconducting computing accelerators. As stated by S.

S. Tanu, et al. [31], due to the lack of sophisticated design

tools and the limited device density and memory capacity in

superconducting technology, applications with tiny work-

ing set sizes and high computational intensity are ideally

suited for JJ-based accelerators. As a proof-of-concept, the

authors developed an RQL-based accelerator for SHA-256

engines, achieving 46× better energy-efficiency than CMOS.

To improve the critical path and the overall energy efficiency

of their implementation, the optimization focus was on the

two most critical components of the SHA engine: adders and

registers. However, no answers were given to questions of

more general interest.

Another promising effort is the stochastic computing-

based deep learning acceleration framework presented by R.

Cai, et al. [3]. The authors of this work took advantage of

stochastic computing’s time-independent bit sequence value

representation and the small hardware footprint of its oper-

ators to redesign the basic neural network components in

AQFP and were able to achieve orders of magnitude energy

improvements compared to CMOS. However, the known

drawbacks of stochastic computing [21] (e.g., the calcula-

tion accuracy, expressiveness, and performance of stochastic

computing circuits depend on the length and correlation of

the used bit-streams) raise a number of questions regarding

the suitability and efficiency of this method for more general

tasks or for precise computing applications.

While these implementations succeed at demonstrating

the potential of superconducting computing, the question of

“what a more general superconducting design methodology

would look like?” is still pending. To get a better understand-

ing of the reasons that make superconducting computing so

challenging a good idea may be to take a step back and look

3
State-of-the-art RSFQ processor implementations assume 256-bit on-chip

memories [1]. However, even relatively small changes in their size can lead

to a significant increase in access delay and JJ count [28] making them

impractical for real-world applications.

closer at the fundamentals of this technology as well as its

main differences from CMOS [16, 17].

In contrast with CMOS, where an “1” is represented by

a steady voltage level in hundreds of millivolts, in SFQ,

picosecond-duration, millivolt-amplitude pulses are used.

Moreover, SFQ comes with a different set of active (JJs) and

passive (inductors) components and interconnection struc-

tures (Josephson Transmission Lines and Passive Transmis-

sion Lines) than CMOS. Clock distribution and synchroniza-

tion are also major concerns [10] as each Boolean SFQ logic

gate has to be driven by a synchronous clock and all input

pulses need to be aligned.

Given the difficulties that existing approaches face and the

unique characteristics of superconducting technology, the

most promising way forward is to come up with innovative

computing paradigms and circuit architectures that (a) use

much fewer JJs than transistors for the same information

processing, (b) have low memory requirements, (c) allow for

easier clocking, and (d) can cover a wide range of applica-

tions [32]. Race logic provides exactly this opportunity.

2.2 Race Logic
The core idea behind race logic [19, 33] is to encode infor-

mation in the timing of events rather than the amplitude of

voltage levels. Events are represented by low to high edges

and computation emerges through the purposeful interac-

tion of these edges and their relative delays. The time it takes

for an event to appear on a wire is what encodes the value.

Thus, only a single wire is required per variable.

x
y

x
y x …

clk

c
(i) (ii) (iii) (iv)

𝛿(x, 2)

min(x, y)

max(x, y)

x=2

y=3

t = 0 1 2 3 4 5

inh(y, x)

inh(x, y)

(v)
rst

x
y

Figure 1. Panels (i), (ii), (iii), and (iv) show the implemen-

tation of Min, Max, Add-Constant, and Inhibit functions

in race logic with off-the-shelf CMOS components. Panel (v)

provides an example waveform for x = 2 and y = 3.

The operators forming the foundation of race logic are

Min (FirstArrival), Max (LastArrival), Add-Constant

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

437

(Delay)
4
, and Inhibit

5
. Figure 1 shows the implementation

of these four primitives with off-the-shelf CMOS compo-

nents. Prior to the next computation, race logic-driven cir-

cuitry must be reset.
Regarding its applicability, race logic yields a complete

implementation of space-time algebra [25, 26], which pro-

vides a mathematical underpinning for temporal processing.

Any function that satisfies the properties of invariance and
causality complies with space-time algebra, and thus it is

implementable in race logic. In the past, A. Madhavan, et

al. [19] used race logic to implement Needleman and Wun-

sch’s popular DNA sequence algorithm. M. H. Najafi, et

al. [23] demonstrated a low-cost bitonic sorting network cir-

cuit using temporal processing. G. Tzimpragos, et al. [33]

applied race logic to accelerate ensembles of decision trees,

while J.E. Smith [25] explored the relationship between tem-

poral codes and spiking neural networks.

Besides its promises though, the implementation of this

new paradigm, where the order of events occurrence defines

computation, is currently tied to specific assumptions and

the properties of the underlying CMOS technology, which

in some cases may restrict innovation. For example, as dis-

cussed above, when edges are used for event representation,

Min and Max functions can be realized with plain OR and

AND gates. What happens though when edges are replaced

by pulses, as in the superconducting case? To answer this

question and establish a theoretical foundation that will al-

low us to better understand how processing in the temporal

domain can unlock the true potential of emerging technolo-

gies we proceed with this logic’s formalization.

3 Formalization
Computing based on temporal relationships departs from the

traditional binary encoding and Boolean logic, and provides

a promising pathway for unlocking the true potential of

emerging technologies. However, to make this computing

paradigm a viable solution the first question that we should

answer is “what abstractions do we need to establish in order

to capture its capabilities, verify the correctness of temporal

implementations independently of underlying assumptions

and technology properties, and build more complex temporal

circuits in a systematic way?”.

To solve this problem and set the foundation for the design

and evaluation of large-scale temporal systems, in this sec-

tion, we provide formal definitions of its primitive operators

4
We assume that smaller delays in rise time encode smaller magni-

tudes, while larger magnitudes are encoded as longer delays. In the

case where shorter delays represent larger magnitudes, FirstArrival

will stand for Max, LastArrival will serve as Min, and Delay as

Constant Subtraction.

5
The Inhibit function has two inputs: an inhibiting signal and a data sig-

nal. If the data signal arrives first, it is allowed to pass through the gate

unchanged. Otherwise, the output is prevented from ever going high, which

corresponds to ∞ in the race logic world.

and constraints through an extended temporal logic capable

of concisely expressing delay-based computations.

3.1 Computational Temporal Logic
Space-time algebra [25, 26] defines the primitive operators

of generalized race logic over the set of Natural numbers,

and thus provides a high-level abstraction to the event-based

computation happening at the circuit-level. This abstraction

may in some cases be useful for functional interpretation

or synthesis; however, it cannot capture lower-level details

that may be critical for the hardware implementation and

reasoning of such systems. Our aim is to build a formalization

that covers this gap and safely decouples functional from

implementation specifications.

Temporal logic is a tool commonly used for represent-

ing and reasoning about propositions qualified in terms of

time; e.g., an event in a system S has happened or will hap-

pen some time in the past or future. A system S transitions

through a sequence of states in time, where each state St is
associated with a time step t belonging to a discrete time

domain. Properties are then expressed as formulas and are

evaluated along such sequences of states. Formulas are con-

structed recursively from propositional atoms by applying

usual propositional connectives ¬,∨,∧,→,↔ and the addi-

tional temporal logic operators discussed below.

In the well-established setting of Linear Temporal Logic

(LTL), the future-time temporal operators are used: ♢ some
time in the future, always in the future, gnext time (to-
morrow), U until, and R release. Past LTL (PLTL) extends

LTL with past-time operators, which are the temporal du-

als of the future-time operators, and allows one to express

statements on the past time instances, such as: ♦ sometime in
the past, ■ always in the past (historically), wprevious time
(yesterday), S since, and T trigger [5, 9, 15]. Even though the

past-time operators do not add expressive power in the sense

that any LTL formula with past operators can be rewritten by

only using the future-time temporal operators, the past-time

operators are particularly convenient in practice; they allow

us to keep specifications more intuitive and easy to com-

prehend, and they can provide significantly more compact

representations than their future-time counterparts.

Each operator operates on a sequence of states, which

defines a discrete interval of timesteps – the scope of the
operator. We categorize these temporal operators based on

their scope at time step t as follows:

• remote past operators ♦, ■, S, T – their scope is [0, t];
• immediate past operator w

– its scope is {t − 1}, or

the empty interval if t = 0;

• present operator (all propositional connectives) – its

scope is {t};
• immediate future operator g

– its scope is {t + 1};
• remote future operators ♢, , U, R – their scope is

[t,∞).

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

438

The scope of an arbitrary formula ϕ is defined recursively

based on the scopes of the operators in ϕ and the given time

step t .
In LTL, the notation ⟨S, t⟩ is used to signify a system S at

time step t . We say that an event ϕ occurs at time step t in the

system S , if ϕ holds at time step t in S , denoted by ⟨S, t⟩ |= ϕ.
In this paper, we primarily rely on the formal semantics of

the ♦ operator (sometime in the past):

⟨S, t⟩ |= ♦ϕ iff ∃k . (0 ≤ k ≤ t ∧ ⟨S,k⟩ |= ϕ)

This definition reads as: the temporal formula ♦ϕ holds at

time step t in the system S if and only if there exists a time

step k prior or equal to t when the formula ϕ holds. However,

this operator is incapable of encapsulatingwhen ϕ held in the

past, which is essential for our case. To address this issue, we

introduce the earliest-occurrence function described below.

Let∞ be a special symbol that represents an unreachable
time step; in other words,∞ indicates the lack of an event

occurrence in a period of interest. The earliest-occurrence

function E ⟨S ,t ⟩(ϕ) receives as input a formula ϕ and returns

the earliest time step tmin ∈ [[ϕ]]⟨S ,t ⟩ , where [[ϕ]]⟨S ,t ⟩ is the
scope ofϕ at time step t in the system S , such that ⟨S, tmin⟩ |=

ϕ. Ifϕ does not hold at any time stepwithin [[ϕ]]⟨S ,t ⟩ , then the
earliest-occurrence function returns∞. The formal definition

of this function follows:

E ⟨S ,t ⟩(ϕ) =


tmin (tmin ∈ [[ϕ]]⟨S ,t ⟩) ∧ (⟨S, tmin⟩ |= ϕ) ∧

∧ (∀j .0 ≤ j < tmin : ⟨S, tmin⟩ ̸|= ϕ)
∞, otherwise.

The proposed function is paired with the existential prim-

itives of the classical temporal logic, extends the notions of

“some time in the past” and “some time in the future” with the

notion of “when” an event occurred, and it is fundamental

for the connection of our event-based formalization, which

we present next, with the existing space-time theory.

3.2 Race Logic Semantics
According to space-time algebra [25, 26], FirstArrival (FA),

Inhibit (IS), and Delay (D) operators are functionally com-

plete for the set of space-time functions. In prior work, the

functionality of these operators at the event-level has been

primarily described through their realization with off-the-

shelf CMOS components under the assumption of an edge-

based delay encoding. In this work, we decouple for the

first time their specification from their implementation and

provide a formal definition, presented in Table 1, using the

above-described computational temporal logic. Moreover, be-

sides these three basic operators, we provide definitions for

LastArrival (LA) and Coincidence (C) operators, which

have been widely used in a number of accelerators.

Table 1. PLTL-based semantics of the operators

FirstArrival (FA), StrictInhibit (IS), Delay (D),

LastArrival (LA), and Coincidence (C).

⟨S, t⟩ |= FAϕψ iff ⟨S, t⟩ |= ♦ϕ ∨ ♦ψ
⟨S, t⟩ |= ψISϕ iff ∃k . (0 ≤ k ≤ t ∧ ⟨S,k⟩ |= ϕ ∧ ¬♦ψ);
⟨S, t⟩ |= Dcϕ iff ∃k . (0 ≤ k + c ≤ t ∧ ⟨S,k + c⟩ |= ♦ϕ);
⟨S, t⟩ |= LAϕψ iff ⟨S, t⟩ |= ♦ϕ ∧ ♦ψ ;
⟨S, t⟩ |= Cϕψ iff ∃k . (0 ≤ k ≤ t∧ ⟨S,k⟩ |= ϕ ∧ψ) ∧

∧∀j .(0 ≤ j < k ∧ ⟨S, j⟩ ̸|= ♦ϕ ∨ ♦ψ);

Informally, Table 1 reads as follows:

• FA: the formula FAϕψ holds at time step t in system S
if and only if either ϕ orψ hold at time step t or prior.

• IS: the formulaψISϕ holds at time step t in system S
if and only if there exists a time step k prior or equal

to t when ϕ holds andψ does not hold at this and any

prior time steps.

• D: the formulaDcϕ holds at time step t in system S if

and only if there exists a time step k + c prior or equal
to t when ϕ holds at this (c = 0) or any prior time steps

(c , 0).

• LA: the formula LAϕψ holds at time step t in system

S if and only if both ϕ and ψ hold independently at

time step t or prior.
• C: the formula Cϕψ holds at time step t in system S
if and only if there exists a time step k prior or equal

to t when both ϕ andψ hold simultaneously and there

are no prior time steps where either ϕ orψ hold.

These definitions provide a PLTL-based specification of

the basic race logic operators over temporal events; however,

they will always return a proposition: True or False. To ex-
tract the step at which these functions evaluate to True for
the first time in their scope the above-introduced earliest-

occurrence function E ⟨S ,t ⟩(ϕ) has to be used. For example,

E ⟨S ,t ⟩(FAϕψ) will return the first time step that either ϕ or

ψ hold.

In a nutshell, the presented formalism, along with the

proposed extension to the classical temporal logic: (a) guar-

antees that the specification of our operators is independent

of any underlying assumptions; e.g., pulse- vs edge-based

encoding, (b) bridges the gap between the high-level defini-

tions provided by space-time algebra and the event-based

computing happening at the implementation level, and (c)

opens up the door to the use of model checking tools for

the formal analysis, validation, and optimization of more

complex temporal circuit designs.

4 Superconducting Temporal Architecture
The mathematical formalism raised in Section 3 lays the

foundation for building and verifying the desired temporal

operators. In this section, we first describe their implemen-

tation in RSFQ, then we present the corresponding circuit

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

439

simulation results, and finally we propose a self-clocked

RSFQ architecture that alleviates the clock distribution and

skew problems met in traditional digital designs ported from

CMOS to the RSFQ world.

4.1 Temporal Primitives in RSFQ
The way in which events are encoded plays a critical role in

selecting the hardware that most efficiently implements logic

operators. For example, given the conventional rising edge-

based realization of events, FirstArrival and LastArrival

functions can be implemented with a single OR and AND

gate, respectively. As shown in Figure 1, an OR gate fires

when its first high input arrives, while an AND gate fires

only when all its inputs are “1”. An important property of

edge-based event encoding is that it automatically keeps

track of the input state at all times – a signal that has made a

transition from a “low” to “high” state will not make a tran-

sition back to a “low” state in the same computation. This

feature breaks down when dealing with pulses. Pulses natu-

rally return back to their “low” state, preventing downstream

nodes from implicitly knowing the state of its predecessors.

To address this issue we propose embedding the state into

each gate, instead of relying on the input to “hold” state for

us. Interestingly, the majority of RSFQ elementary cells have

both logic and storage abilities [18], and thus they provide

several unique design opportunities. In Figure 3, we present

the schematics of our circuit designs, along with Mealy ma-

chines describing their operation, and WRSPICE [13] simu-

lations showing their functionality. A detailed description of

their implementation also follows.

According to its formal definition, the FirstArrival gate

FA emits an output pulse when its first input arrives. For

its implementation in RSFQ, a Merge element along with a

D flip-flop are used – Figure 2 (i) and Figure 3 (i). A Merge

element can be thought of as a non-latching OR gate that

produces an output SFQ for each incoming pulse from any

of its input ports. However, in race logic, at most one event

is allowed to occur per “wire” across the entire computa-

tion. To ensure that all but the first arriving pulses will be

filtered out a D flip-flop has to be used. A D flip-flop is

built around a direct current (DC) SQUID and has two sta-

ble states: Init and Loaded , which correspond to the lack or

presence of a flux quantum, respectively. When a data signal

arrives at its input port the latch switches to/remains in the

Loaded state and returns to the Init state only when a clock

signal is received. When transitioning from Loaded to Init
the flux quantum stored in the quantizing SQUID loop is

released; thus, an output pulse is emitted and the quantizing

loop gets cleared. While in state Init , a clock pulse will not

cause any state change or output activity. So, to achieve the

desired functionality a reset signal rst is connected to the

D flip-flop’s data “in” port, while the output of the Merge

element plays the role of the clock signal.

merge
φ
ψ

rst FAφψ

φ

ψ
ψ𝑰𝒔φ

(i) (ii)

Figure 2. Panel (i): FirstArrival gate is built out of a

Merge element and a D flip-flop; a reset signal rst is con-
nected to the D flip-flop’s data input, while the output of
the Merger serves as its clock signal. Panel (ii): to implement

Inhibit a latching Inverter is used; the data signal ϕ serves

as the Inverter’s clock signal and the inhibiting signalψ as

its data signal.

The Inhibit operator Is receives two input signals: one

for the inhibiting signalψ and one for the data signal ϕ. As
described in Section 2.2, an output pulse is emitted only if

ϕ arrives beforeψ . To implement Inhibit in RSFQ we use a

single Inverter – Figure 2 (ii) and Figure 3 (ii). According

to the Inverter’s specification, if a data pulse arrives, the

next clock pulse reads out “0”; otherwise, it reads out “1”.

Thus, if we route signal ϕ to the inverter’s clock port andψ
to its data port, this component will act exactly as an Inhibit

operator in our logic.

In traditional SFQ circuits, Josephson Transmission Lines

(JTLs) are commonly used for the interconnection of logic

cells over short distances. More specifically, a JTL is a se-

rial array of superconducting SQUIDs and operates in the

following way. Because magnetic flux cannot be absorbed

or dissipated by a superconducting circuit, an incident flux

quantum is only allowed to pass along the JTL, and does so by

switching each JJ in turn. In our case, these interconnection

structures are not used just for pulse transmission purposes

but also realize our Delay operator D – Figure 3 (iii). As

described in Section 2.2, delaying a race logic event by a

fixed amount of time corresponds to Constant Addition.

For the implementation of the LastArrival gate, a C-

element is used – Figure 3 (iv). A C-element has two input

ports and consists of two SQUIDs. In the circuit’s initial

state, no persistent superconducting current is present in the

quantizing loops. When an input arrives, the corresponding

junction gets triggered but the generated pulse is not suf-

ficient to trigger an output pulse. When the second input

pulse arrives, the total current exceeds the threshold of criti-

cality, an output pulse gets emitted, and the element returns

to its initial state. The order of input pulse arrivals does not

matter.

Finally, a Coincidence gate is supposed to fire only if its

inputs arrive “simultaneously”. In edge-based implementa-

tions, a Coincidence gate is composed of FA,LA, Is , and D
gates. In the pulse-based superconducting logic though, a sin-

gle RSFQ AND gate is all needed to implement Coincidence

– Figure 3 (v). As known, an RSFQ AND gate produces an

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

440

(i) FAφψ

(ii) ψ𝑰𝒔φ

(iii) Dcφ

(iv) LAφψ

(v) Cφψ

φ +1*𝑡$%&

φ +2*𝑡$%&

φ +3*𝑡$%&

φ

Init ψ arrived

ψ/0φ ᴧ⌝ ψ/1

Init φ arrived

φ/0

ψ/1

ψ/0

φ/1

ψ arrived

Init

φ arrived

ψ arrived
φ/0

ψ/0

ψ/0

φ/0

clk/0

clk/0
φʌψ

arrived
clk/1

Init

φ/0

c time steps
complete/1

Next
time
step

φ arrived

c times

φ/0

φʌψ/0

Init Loaded

rst/0φ ᴠ ψ/0

φ ᴠ ψ/1

φ

ψ

LAφψ

φ

ψ

rst

FAφψ

φ

ψ

clk

Cφψ

φ

ψ

ψ𝑰𝒔φ

φ

φ

φ

φ

ψ

ψ

ψ ψ𝑰φ

LAφψ

Cφψ

rst

φ

ψ

FAφψ

φ+𝑡$%&
φ+2𝑡$%&

clk

clk

Figure 3. Panel (i): FirstArrival FAab. Panel (ii): strict Inhibit aISb. Panel (iii): DelayDca, where t JT L is the delay that

each JTL causes. Panel (iv): LastArrival LAab. Panel (v): Coincidence Cab.

output pulse only if both its input pulses arrive within the

same cycle; thus, it performs in an easy way the desired

functionality.

Area and latency results for each of these operators are pro-

vided in Table 2. The shown estimates are based on our WR-

SPICE [13] simulations using the MIT-LL SFQ5ee 10 kA/cm
2

process.

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

441

Table 2. Area and latency results for our temporal operators

implemented in the MIT-LL SFQ5ee 10 kA/cm
2
process and

simulated with WRSPICE [13].

Function Area (#JJs) Latency (ps)

FA 10 13

Is 8 11

D 2/JTL 5/JTL

LA 6 8

C 11 9

4.2 Self-clocked Temporal RSFQ Circuits
Clocking and synchronization are two of the most critical

concerns and limitations in the design process of an RSFQ

design. The majority of RSFQ Boolean gates are sequential in

nature. Hence, each gate in a Boolean RSFQ circuit needs to

be synchronized with all other gates and the clock network.

The complexity and overhead introduced by the clock net-

work are far from negligible, primarily because an additional

Splitter is required for each latched gate for clock fan-out
6
.

These additional Splitters affect a design both in terms

of area (3 JJs per element) and speed (each Splitter intro-

duces a delay on the order of a single JTL), while they also

contribute to a higher static and dynamic current [10, 27].

Moreover, device variations can promote disproportionate

clock timing skews, which can critically affect the function-

ality of a Boolean RSFQ design; all pulses between a gate

and each of its fan-in gates must arrive in the same clock

cycle (as defined by the clock network). To mitigate these

issues, advanced path-balancing techniques and customized

RSFQ logic synthesis tools are needed.

In our superconducting temporal logic, many of these con-

cerns are naturally alleviated as FirstArrival, Inhibit, and

Delay, which form the minimal functionally complete opera-

tor set, are asynchronous – the “clock” signal of the latching

building blocks used for their realization has been repur-

posed, as described in Section 4.1. However, in some cases,

such as Coincidence, the use of a synchronous gate/block

makes sense. To avoid costly clock trees and the clock skew

problems that come with them, we propose a data-driven
self-timing scheme.

In a data-driven self-timed (DDST) system, timing infor-

mation is carried by data. Z. J. Deng, et al. [6] explored for the

first time such an idea, targeting binary RSFQ circuits, more

than two decades ago. In their solution, data are carried by

complementary signals, generated by using complementary

D flip-flops; two parallel lines are required for each bit. The

clock signal is generated by a logical OR function between

these lines. Because each functional block is now locally

clocked, there is no need for a global clock network. There-

fore, the system becomes more robust to process variations

6
RSFQ logic gates have by default only one fanout.

and has better control over clock timing
7
. Besides its advan-

tages though, this idea never really took off due its high cost;

the method introduces a significant overhead for routing as

well as additional circuitry for generating complementary

signals for each logic gate.

Asynchronous system

Synchronous
Logic

clk

din0

din1

time

din0

din1

clkAsync/Sync
Logic

Async/Sync
Logic

merge

Figure 4. Proposed data-driven self-timing (DDST) scheme.

The clock signal can be locally generated from input data at

each gate. If no input pulse arrives, it is safe to assume the

operator idle, and thus no clock pulse is required.

Our DDST method – shown in Figure 4 – targets temporal

rather than binary systems and is able to provide similar

benefits at a much lower “price”. In contrast to Boolean logic,

where for example a Not gate has to be clocked even in

the absence of an incoming pulse, when processing in the

temporal domain, an operator can be safely considered idle

for the time steps that no input pulse arrives. Thus, comple-

mentary data are no longer required. This characteristic of

temporal codes significantly simplifies the implementation

of our DDST approach, reduces its area overhead, while still

allowing one to have the desired fine-grained timing control.

Resetting: Given the absence of an independent clock and

the stateful nature of RSFQ operators, resetting must also

be rethought. For example, an RSFQ Inverter, which im-

plements Inhibit, will not return to its initial state until a

pulse arrives to its clock port, while a C-element, used as a

LastArrival gate, will not reset until both its inputs arrive.

One possible solution is to add an additional reset signal to

Is and LA gates, merged with their input data signals; as can

be seen in Figure 3, the rest of our temporal operators return

to their initial state without the need for external signals.

This additional signal allows the immediate reset of such a

gate but it comes with additional circuitry too. For example,

the Merger that has to be used in the case of Inhibit will

cost us at least 5 JJs, while the overhead in the case of a

LastArrival gate will be much higher as the reset signal

must be forwarded to the input ports that have not received

a data pulse yet.

When such a reset signal is used, the target gate may

return to its initial state; however, in many cases an output

pulse is generated too. This output pulse propagates through

7
Globally asynchronous, locally synchronous (GALS) clocking is a

commonly-used technique to mitigate timing variations across functional

blocks and reduce clock tree overhead in CMOS as well [8].

Session: Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

442

LastArrival
S0 Init

a arrived S1

S3 a and b arrived

a

b out

time

a

b

out

compute reset

state S0 S0S1

(ii)(i)

S3

b arrived S2

Figure 5. LastArrival can be in one of the four states

shown in Panel (i). To reset this component both input pulses

a and b must arrive. Panel (ii) shows how a spacer period

can be used to avoid the interference between data pulses

associated with the actual computation and pulses generated

due to a reset signal.

the circuit in a downstream fashion and may affect the state

of other subsequent gates. So, resetting a deep temporal

circuit may have to be done sequentially – one stage of gates

at a time.

To avoid the interference of data pulses that relate to the

actual computation with the ones generated by resetting, a

spacer period will also be needed. Figure 5 illustrates this

scenario for a plain LastArrival gate. Once the “compute”

period ends, a reset pulse is sent to its input port b. Any
output pulse observed until the next compute period starts

should be ignored. If the LastArrival gate is connected to

other gates, the generated output pulse may also affect their

state even if they have already been cleared. So, resetting in

that case must happen step-by-step and the duration of the

spacer period will have to be adjusted accordingly.

An alternative method that we can rely on for resetting is

to adjust the amount of applied bias current; setting the ap-

plied bias current to zero will release the stored flux quanta

and return the gates to their initial states. This solution does

not require additional hardware and comes without the con-

cerns related to the propagation of reset-generated pulse.

However, it is still not “free”.

Choosing between these two options depends on the struc-

ture of the constructed circuit, possible resource constraints,

and the corresponding delay associated with each of these

methods.

5 Evaluation
In the previous sections, a framework for understanding the

proposed RSFQ-based temporal computing paradigm at the

logic, primitive gate, and device-levels has been presented.

We may now leverage this understanding to functionally

validate our design methodology through a number of accel-

erator designs. For the timing and functional validation of

the developed circuits, we first identify timing constraints

that affect the design flow and then provide corresponding

SPICE-level simulation results. Finally, we compare their per-

formance against their CMOS counterparts, showing more

than an order of magnitude improvements.

Experimental setup: We perform our analysis based on

the open-source WRSPICE circuit simulator [13] using the

MIT-LL SFQ5ee 10 kA/cm
2
process. For our designs’ intercon-

nections, we use JTLs along with Splitters (s) andMergers

(m) where required.

5.1 Timing Analysis
Computing based on temporal relationships is in many cases

naturally immune to noise as the final outcome often depends

on the interval or the order in which events occur and not

precise arrival times. Under conventional binary encoding,

an early or late pulse translates to a bit-flip and its effect on

the computation’s accuracy depends on the bit’s position.

Under delay representation though, a time-skewed pulse

may or may not affect the encoded value – in reality, an

interval rather than a specific time is used to represent a

value – and that may not even change the rank order of the

occurring events.

To ensure the robustness of our designs though we cannot

rely solely on the properties of our encoding and temporal

logic. Understanding the various timing constraints is critical

for reasoning about our circuits’ behavior and developing a

systematic way for the design of temporal RSFQ accelerators.

To address this concern, in the following, we first introduce

the required terminology for our timing analysis and then

proceed with the description of the timing constraints of

temporal circuits and the quantification of our primitives’

robustness to the timing skew of pulses.

Figure 6 provides an illustration of the main timing rela-

tionships between pulses in our architecture. Data-to-data

(tD2D) window represents the time difference between two

input data signals. Clock to Q (tC2Q) denotes the delay be-

tween clock signal arrival and the occurrence of the output

event. The propagation delays of the Splitter and Merger

are shown as ts and tm , respectively. Finally, tsu represents

the setup time, which denotes the minimum amount of time

required between the arrival of data and clock signals, while

tc is the time window where input pulses are forbidden to

arrive [22].

To avoid setup time violations, tD2D has to be less than

tm − tsu if the two input pulses represent the same value. To

increase this time window, delay elements can be added after

the Merger. In the case where two input pulses represent

two consecutive values (e.g. din0 = 2 and din1 = 3), tD2D
has to be greater than tm + tc . If tD2D is smaller than tm + tc ,
either the second input pulse will get “lost” (timing violation)

or both pulses will be considered to represent the same value

(e.g. din0 = 2 and din1 = 2), which is incorrect.

Stretching the “valid” data time window of a cycle is possi-

ble with the use of additional JTLs; e.g., if we want the “valid”

Session: Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

443

time(ps)

clk

din0

vo
lt

ag
e

𝑡𝐶
din0

(i) (ii)

Synchronous
Logic

clk

dout
din1 s

m

s
𝑡𝑠𝑢

𝑡𝐷2𝐷

𝑡𝑓

𝑡𝑚 𝑡𝐶2𝑄

din1

𝑡𝐷2𝐶

𝑡𝐷2𝐷

𝑡𝐶𝑡𝑠𝑢

𝑡𝑠
𝑡𝑚

dout𝑡𝐶2𝑄

𝑡𝐷2𝐷’

0 ∞

𝑡𝑃𝑟𝑜𝑝

+δ

𝑡δ

Figure 6. Illustration of the various timing constraints in

the case of synchronous temporal RSFQ blocks.

data time window of a cycle to go from 10 ps to 20 ps, four

rather than two JTLs have to be used for the realization of

D1ϕ. Obviously, this change comes at the cost of area (more

JTLs mean more JJs) and performance (each cycle will last

longer); but, it results in a much smaller chance of a pulse

getting lost in a synchronous component due to imprecision

associated with variability or noise. To better understand

and quantify the tolerance of our designs to time skew, we

perform a number of detailed SPICE-level simulations. These

simulations allow us to analyze the sensitivity of temporal

gates to pulses under various tD2Ds.

As expected, imprecise pulses do not affect the correct

operation of FA,D, and LA, which are implemented with

Merge, JTL, and C-element components; all of these circuits

are by nature clockless. The case of Inhibit is of particular

interest though as although its clock signal has been repur-

posed, still the timing constraints described earlier apply.

Figure 7 provides simulation results of this case – ψIsϕ
– for various tD2Ds: -5, 0, and 2 ps. As can be seen, if ψ
arrives 5 ps before ϕ, the output of the Inhibit gate remains

“0” (the correct value), while an output spike gets produced

for tD2D > -5 ps. So, if two input pulses representing two

different values are always more than 5ps apart, Inhibit is

guaranteed to work as expected. However, if two variables

have the same value, D1x has to be greater than 5 ps and

the data input pulse ϕ may need to be delayed – so it will

appear towards the end of the assigned interval – in order

to avoid the occurrence of an undesired output pulse.

For the verification of more complex designs under timing

uncertainty, the formalism introduced in Section 3.2 can be

used. Besides model checking, with the help of the proposed

function E ⟨S ,t ⟩() events occurrences can be translated to

numbers and incorporated into an interval analysis. Such

an analysis is beyond the scope of this paper; however, we

foresee its potential for the reasoning of superconducting

temporal designs in noisy settings, where understanding

(and quantifying) how timing skews add up may be critical

for the correct behavior and efficiency of the system.

ψ

φ

ψ 𝑰𝒔φ

ψ arrives 5 ps
before φ

ψ and φ
arrive together

φ arrives 2 ps
before ψ

Figure 7. Timing analysis for the Inhibit gate.

5.2 Proof-of-Concept
As a proof-of-concept, we design and simulate temporal

RSFQ accelerators for (a) DNA sequencing, (b) decision trees,

and (c) arbitrary function tables. The temporal DNA se-

quencing algorithm was presented in the original race logic

paper [19]. Both synchronous [19] and asynchronous [20]

CMOS implementations have been demonstrated since then.

“Race” decision trees [33] are another interesting application.

Race trees demonstrate the utility of temporal logic to classifi-

cation problems. For the realization of their decoders the use

of a NOT gate is required; NOT is not one of temporal logic’s

primitives and its functionality in the temporal domain is

different than in Boolean logic. Finally, in contrast to these

two designs that are purely asynchronous, for the implemen-

tation of the circuit realizing an arbitrary function table [25]

the use of both synchronous and asynchronous components

is needed, providing a great opportunity to showcase the

effectiveness of our data-driven self-timing scheme.

5.2.1 Needleman-Wunsch Sequence Alignment
Needleman and Wunsch’s algorithm was one of the first

applications of dynamic programming to compare biological

sequences. The algorithm assigns a score to every possible

alignment and its purpose is to find all possible alignments

having the highest score. In more detail, the main idea behind

this algorithm is that initially a 2D grid will be constructed

out of two arbitrary strings P andQ – Figure 8 (i) – and then,

for each individual pair of letters a score will be chosen; each

operation – deletion, insertion, match – is associated with a

different directed edge, where each edge can have its own

score/weight.

In the algorithm’s temporal realization, each score asso-

ciates to a delay. Hence, the total time required for a single

“pulse” to propagate from the array’s input to the output

reveals the desired similarity score. The architecture of this

circuit can be generally thought of as a systolic array, where

each cell is implemented in RSFQ, as shown in Figure 8 (iii);

Figure 8 (ii) shows its CMOS implementation, as proposed by

A. Madhavan, et al. [19]. The penalties for deletion, insertion,

and match are in the shown example set to 1.

Session: Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

444

delete

insert

match

match
circuit

symbol
from Psymbol

from Q

(ii) (iii)

(i)

(ii)

153 ps

192 ps

in

(1,1)

(2,2)

(3,3)

(4,4)

(1,1)

(2,1)

in

(3,2)

(3,3)

(4,4)

Q
P

A C T

A

C

T

Q
P

A C T

A

C

T

FA

FA
s

s

δ

δ

JJ
insert

match
circuit

symbol
from P

delete

match

symbol
from Q

Q

P

(i)

Figure 8. Panel (i): 2D grid constructed followingNeedleman

and Wunsch’s algorithm. Panel (ii): schematic of CMOS unit

cell for the implementation of a DNA sequence alignment

temporal accelerator. Panel (iii): RSFQ equivalent circuit. P
and Q represent the two DNA strings to be aligned. If there

is a “match” the match circuit returns True; otherwise, it
returns False. The penalties/delays for deletion, insertion,

and match are set to 1.

In contrast to the synchronous CMOS case, where the

similarity score is incremented by one as the first arriving

pulse goes through a flip-flop, in our asynchronous RSFQ

implementation,D1x matches the propagation delay of each

unit cell. Thus, every time a pulse goes through a unit cell

the score will increment by one. To control the propagation

of a pulse across the diagonal, which should happen only

when a match occurs, a JJ is used. The switching operation is

performed by changing the value of the bias current applied

to the JJ; if the current is too low, an incoming RSFQ pulse

cannot cause the JJ to fire, which allows for the CMOS control

of the circuit.

delete

insert

match

match
circuit

symbol
from Psymbol

from Q

(ii) (iii)

(i)

(ii)

153 ps

192 ps

in

(1,1)

(2,2)

(3,3)

(4,4)

(1,1)

(2,1)

in

(3,2)

(3,3)

(4,4)

Q
P

A C T

A

C

T

Q
P

A C T

G

A

T

FA

FA
s

s

δ

δ

JJ
insert

match
circuit

symbol
from P

delete

match

symbol
from Q

Q

P

(i)

Figure 9. Shortest path and simulation results for a 3×3

DNA sequence alignment problem. Panel (i): P = ACT and Q
= ACT. Panel (ii): P = ACT and Q = GAT.

Figure 9 shows WRSPICE simulation results for a 3×3

DNA sequence alignment problem. In Panel (i), P = ACT and

Q = ACT are compared. Considering that the two strings

perfectly match, the shortest path from the grid’s input to

output cell will be across its diagonal – consisting of four

unit cells – and results in a delay of 153 ps. In Panel (ii),

where the strings P = ACT and Q = GAT are compared, the

propagation delay of a pulse across the grid is 192 ps; the

shortest path now consists of five rather than four unit cells.

These results match our expectations; in our experiments,

the penalties for deletion, insertion, and match are set to 1

and correspond to a 38 ps delay – equal to the propagation

delay of each unit cell.

Init

ψ/1

φ/1

φ

ψ

FAφψ

(ii)(i)

(iii)

φ

ψ

FAφψ

φ

ψ

FAφψ

φ

ψ

FAφψ

(ii)(i)

Figure 10. Panel (i): schematic of an RSFQ Merge element

realizing a stateless FirstArrival gate. Panel (ii): WRSPICE

simulation results.

In some cases, where race logic constraints can be safely

relaxed, superconducting hardware can also provide a trade-

off space that enables optimization for select parameters,

such as area, latency, power consumption, and complexity

(which can play a role in the susceptibility of the circuit

to variability). One example of this can be employed in the

sequencing accelerator, in which a stateless FirstArrival

gate – composed of just a Merger, as depicted in Figure

10 – may be used as an alternative to the stateful version

presented above. The outcome is an accelerator with fewer

JJs (28 rather than 36 JJs are now required per unit cell) and

a ∼14% lower latency. Corresponding simulation results for

the two example cases discussed above are shown in Figure

11.

More performance results and a comparison between our

RSFQ sequencing accelerators and their CMOS counterparts

can be found in Table 3.

Table 3. Estimated (best and worst) latency results for DNA

sequencing accelerator in both CMOS (0.5µm) [19] and RSFQ.

Strings CMOS RSFQ Latency Improv. w/ RSFQ Latency Improv. w/
Length Latency w/ stateful FAs stateful FAs w/ stateless FAs stateless FAs
40 50 ns - 100 ns 1.6 ns - 3.1 ns ∼32× 1.4 ns - 2.7 ns ∼37×

60 75 ns - 150 ns 2.3 ns - 4.6 ns ∼32× 2 ns - 4 ns ∼37×

80 100 ns - 200 ns 3.1 ns - 6.2 ns ∼32× 2.7 ns - 5.4 ns ∼37×

It should be noted that while replacing one or more of our

basic temporal RSFQ primitives with simpler ones may in

Session: Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

445

(i) (ii)

in in

(1,1)

(2,2)

(3,3)

(4,4)

(1,1)

(2,1)

(3,2)

(3,3)

(4,4)132 ps
166 ps

Figure 11. Simulation results for a stateless implementation

of the sequencing accelerator depicted in Figures 8 and 9.

Panel (i): P = ACT and Q = ACT. Panel (ii): P = ACT and Q =

GAT.

some cases be appealing, it is not always safe. For example,

when using a plain Merger as a FirstArrival gate, more

than one output pulses may be generated, which violates

race logic’s constraint for the existence of at most one pulse

per “wire”. In the case of the sequencing accelerator, this

“relaxation” does not cause any malfunction. However, if, for

example, Coincidence or Inhibit gates followed a Merge-

based FirstArrival gate then the possibility of an error

exists; the first spike coming out of a FirstArrival or a

Delay gate is always valid, this is not the case though for all

gates. To verify whether such a replacement is safe or not

the formalism introduced in Section 3.2 can be used.

5.2.2 Race Trees
An ensemble of decision trees can be implemented in race

logic, as described by Tzimpragos, et al. [33]. In the case of

Race Trees, each tree node can be considered an independent

temporal threshold function and be realized with a single

Inhibit operator.

(i) (ii)

(i)

x<2 y<2

x<3

Label
A

Label
B

Label
C

Label
D

i

d
𝐼)

i

d
𝐼)

i
d
𝐼)

i

d
𝐼)

sx
3

y

LA𝑛8𝑛:

LA𝑛8(N𝑛:)

LA(N𝑛8)𝑛,

LA(N𝑛8)(N𝑛,)

s

s

s

s

s

𝑛8

𝑛:

𝑛,

𝑛8
𝑡*>

N𝑛8

A

B

C

D

2

2

(ii)

A

B

C

D

𝑡*>=5

x=4

0

y=1

A

B

C

D

𝑡*>=5

x=2

0

y=3

Figure 12. Panel (i): a decision tree with three nodes. Panel

(ii): temporal RSFQ implementation of that tree.

Figure 12 (ii) shows the RSFQ equivalent of the CMOS

implementation provided in the original paper – realizing

the decision tree shown in Figure 12 (i). For the design of

the “label” decoder, the use of a NOT gate is required. In

contrast to Boolean logic though, NOT is not a primitive

temporal operator. For its construction, we use Inhibit and

an upper bound reference signal tub , which denotes the end

of a specific time interval of interest (directly related to the

inputs resolution in this case). Hence, NOTwill fire at t = tub
if and only if the gate has received no input spikes from time

reference 0 until that moment.

(i) (ii)

(i)

x<2 y<2

x<3

Label
A

Label
B

Label
C

Label
D

i

d
𝐼𝑠

i

d
𝐼𝑠

i

d
𝐼𝑠

i

d
𝐼𝑠

sx
3

y

LA𝑛0𝑛1

LA𝑛0(N𝑛1)

LA(N𝑛0)𝑛2

LA(N𝑛0)(N𝑛2)

s

s

s

s

s

𝑛0

𝑛1

𝑛2

𝑛0

𝑡𝑢𝑏

N𝑛0

A

B

C

D

2

2

(ii)

A

B

C

D

𝑡𝑢𝑏=5

x=4

0

y=1

A

B

C

D

𝑡𝑢𝑏=5

x=2

0

y=3

Figure 13. Panel (i): WRSPICE simulation results for x = 2,

y = 3, and tub = 5. Panel (ii): WRSPICE simulation results

for x = 4, y = 1, and tub = 5.

WRSPICE simulation results are provided in Figure 13.

In the first case, inputs x and y are equal to 2 and 3, while

in the second one, x and y are set to 4 and 1. Moreover,

the upper bound reference signal tub is set to 5 and D1x
corresponds to a 25 ps delay. Associating a smaller delay with

D1x may be possible; however, our main goal in this paper

is to demonstrate the correct functionality of the design

rather than optimizing its performance. As expected, the

final outcome is Label B for the former and Label C for the

latter. The total latency is 150 ps and the design consists of

166 JJs.

More performance results and a comparisonwith its CMOS

counterpart can be found in Table 4.

Table 4. Estimated latency results for hardwired Race Trees

in both CMOS (f = 1 GHz) [33] and RSFQ (D1x = 25 ps).

Trees Depth Inp. res. CMOS RSFQ Improvement
Latency Latency

1 6 4 bits 17 ns 0.464 ns 37×

1 6 8 bits 257 ns 6.464 ns 40×

1 8 4 bits 17 ns 0.490 ns 35×

1 8 8 bits 257 ns 6.490 ns 40×

5.2.3 Arbitrary Function Table
Finally, we implement in RSFQ the feedforward temporal

network previously presented by J. E. Smith [25].

Figure 14 (i) provides the specification of our example

feedforward temporal network. Considering that our func-

tion has three input variables and given the limited fan-in of

our basic operators, the main building block C3 (shown in

Figure 14 (ii)) of our architecture (shown in Figure 14 (iii))

will consist of two 2-ary Coincidence gates; in contrast to

the original design, where Coincidence consists of LastAr-

rival, FirstArrival, Inhibit, and Delay gates, we opt for

the AND gate-based implementation described in Section 4.1.

Session: Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

446

C
a

b

c

s

s

m δ

C
s

s

m δ

δ'

𝑪𝟑

0 1 2 3

1 0 ᄝ 2

2 2 0 2

a b c o D3a

D2b

D1c

D1a

D2b

D2c

a

C

C

C

b

c

𝐼௦ o

(𝒊) (𝒊𝒊)

f

f

f

f

f

f

f

f

f

f
f

f

f

f

m

m

m

൅δ

൅δ

൅δ

m

(i)

(iii)

2

(ii)

𝐶D

𝐶D

𝐶D

a

b

c

s

s

s

s

s

s

o
FA

D3a

D2b

D1c

𝐼)i

d

D2c

D1a

D2b

2

3/∞

2/∞

2/∞

(iv)
𝑚8

𝑚:

𝑚,

a=0

b=1

c=2

𝑚8

𝑚:

𝑚,

o

50ps

50ps

~30ps

~30ps

109ps

219ps

Figure 14. Panel (i): specification of an example function

table. Panel (ii): Block diagram of a self-timed 3-input Co-

incidence gate . Panel (iii): Block diagram showing our

accelerator’s architecture. Panel (iv): WRSPICE simulation

results for a = 0, b = 1, and c = 2.

For its clocking, we apply the data-driven self-timing scheme

proposed in Section 4.2. To successfully handle time-skewed

inputs a delay δ = 10 ps is introduced after each Merger.

A delay element δ ′ is also used to balance the delays of the

two parallel paths that feed the second Coincidence gate.

Simulation results can be found in Figure 14 (iv). In our

simulation,D1x is set to 50 ps and the inputs provided are

a = 0, b = 1, and c = 2. As expected, a spike will appear at

the output of the upper blockm0, colored in red, at t = 209

ps and will go through the succeeding 3-input FirstArrival

gate (stateless rather than stateful FirstArrival gates are

used again); the propagation delay of C3 is 60 ps , so if we

subtract that from the total delay we will end up with 149 ps

of delay which corresponds to the desired value 3. No spikes

will come out of the other two “blocks”, colored in blue and

green, corresponding to two bottom entries of the function

table. Our circuit design consists of 565 JJs and its latency is

219 ps.

6 Conclusion
Superconducting SFQ technologies are a promising candidate

for high-speed and ultralow-energy operation for certain

classes of computation. Though both the underlying physics

and basic circuit technologies are well understood, many

hurdles remain before larger computations can enjoy the

benefits of superconducting materials.

While some of the challenges ahead are fundamental to

the device physics of superconducting, it is also important

to realize that the traditional logic abstractions and digital

design patterns we understand so well have co-evolved with

the hardware technology that has embodied them. As we

look past CMOS, there is no reason to think that those same

abstractions best serve to encapsulate the computational

potential inherent to emerging devices. Computational ef-

ficiency is always lost through abstraction, yet successful

abstractions will keep the most useful aspects of a system

while simultaneously enabling composition, scale, optimiza-

tion, and verification.

In this paper, we demonstrate a new foundation that bridges

the gap between the level-driven logic traditional hardware

designs accept as a foundation and the pulse-driven logic nat-

urally supported by the most compelling superconducting

technologies. The key to this new foundation is the harmo-

nious interaction between three different areas of work –

superconducting logic, temporal predicate logic, and delay-

based codes. We show that superconducting logic can nat-

urally compute over temporal relationship between pulse

arrivals, we formalize and provide implementation circuits

for fundamental operators in temporal logic, we propose

an asynchronous data-driven self-timing scheme, and we

perform a timing analysis to identify timing constraints that

affect the design flow of superconducting temporal accel-

erators. Finally, to validate our hypothesis we implement

three temporal accelerators in RSFQ and compare their per-

formance against their CMOS counterparts, showing more

than an order of magnitude improvements.

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grants No. 1740352, 1730309, 1717779,

1563935, and a gift from Cisco Systems.

Research carried out at LBNL is operated for the U.S. De-

partment of Energy Office of Science under Contract No.

DE-AC02-05CH11231.

Dr. Madhavan also acknowledges support under the Coop-

erative Research Agreement between the University of Mary-

land and the National Institute of Standards and Technology

Physical Measurement Laboratory, Award 70NANB14H209,

through the University of Maryland.

Last but not least, the authors would like to thank James

E. Smith, David Donofrio, Dmitri Strukov, Alexander Wynn,

and the anonymous reviewers for their helpful comments.

References
[1] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki. 2016.

Design and Demonstration of an 8-bit Bit-Serial RSFQ Microprocessor:

CORE e4. IEEE Transactions on Applied Superconductivity 26, 5 (Aug

2016), 1–5. https://doi.org/10.1109/TASC.2016.2565609
[2] D. A. Buck. 1956. The Cryotron-A Superconductive Computer Com-

ponent. Proceedings of the IRE 44, 4 (April 1956), 482–493. https:
//doi.org/10.1109/JRPROC.1956.274927

[3] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai

Qian, Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang.

2019. A Stochastic-computing Based Deep Learning Framework

Session: Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

447

https://doi.org/10.1109/TASC.2016.2565609
https://doi.org/10.1109/JRPROC.1956.274927
https://doi.org/10.1109/JRPROC.1956.274927

Using Adiabatic Quantum-flux-parametron Superconducting Tech-

nology. In Proceedings of the 46th International Symposium on Com-
puter Architecture (ISCA ’19). ACM, New York, NY, USA, 567–578.

https://doi.org/10.1145/3307650.3322270
[4] W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev. 1999.

Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE
Transactions on Applied Superconductivity 9, 2 (June 1999), 3212–3215.

https://doi.org/10.1109/77.783712
[5] Alessandro Cimatti, Marco Roveri, and Daniel Sheridan. 2004. Bounded

Verification of Past LTL. In Formal Methods in Computer-Aided Design,
Alan J. Hu and Andrew K. Martin (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 245–259.

[6] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer. 1997. Data-

driven self-timed RSFQ digital integrated circuit and system. IEEE
Transactions on Applied Superconductivity 7, 2 (June 1997), 3634–3637.

https://doi.org/10.1109/77.622205
[7] M. Dorojevets, P. Bunyk, and D. Zinoviev. 2001. FLUX chip: design

of a 20-GHz 16-bit ultrapipelined RSFQ processor prototype based

on 1.75-/spl mu/m LTS technology. IEEE Transactions on Applied
Superconductivity 11, 1 (March 2001), 326–332. https://doi.org/10.
1109/77.919349

[8] Eby G. Friedman. 1997. High Performance Clock Distribution Networks.
Springer US, Boston, MA, 1–4. https://doi.org/10.1007/978-1-4684-
8440-3_1

[9] Dov Gabbay. 1989. The declarative past and imperative future. In Tem-
poral Logic in Specification, B. Banieqbal, H. Barringer, and A. Pnueli

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 409–448.

[10] Kris Gaj, Eby G. Friedman, and Marc J. Feldman. 1997. Timing of

Multi-Gigahertz Rapid Single Flux Quantum Digital Circuits. Journal
of VLSI signal processing systems for signal, image and video technology
16, 2 (01 Jun 1997), 247–276. https://doi.org/10.1023/A:1007903527533

[11] D. S. Holmes, A. M. Kadin, and M. W. Johnson. 2015. Superconducting

Computing in Large-Scale Hybrid Systems. Computer 48, 12 (Dec

2015), 34–42. https://doi.org/10.1109/MC.2015.375
[12] D. S. Holmes, A. L. Ripple, andM. A.Manheimer. 2013. Energy-Efficient

Superconducting Computing-Power Budgets and Requirements. IEEE
Transactions on Applied Superconductivity 23, 3 (June 2013), 1701610–

1701610. https://doi.org/10.1109/TASC.2013.2244634
[13] Whiteley Research Incorporated. 2019. WRspice reference manual.

Technical Report. http://www.wrcad.com/manual/wrsmanual.pdf
[14] H. Kamerlingh Onnes. 1911. The resistance of pure mercury at helium

temperatures. Commun. Phys. Lab. Univ. Leiden, b 120 (1911).
[15] Hans Kamp. 1968. Tense Logic and the Theory of Linear Order. Ph.D.

Dissertation. Ucla.

[16] N. K. Katam, J. Kawa, and M. Pedram. 2019. Challenges and the status

of superconducting single flux quantum technology. In 2019 Design,
Automation Test in Europe Conference Exhibition (DATE). 1781–1787.
https://doi.org/10.23919/DATE.2019.8747356

[17] Konstantin K. Likharev. 2012. Superconductor digital electronics.

Physica C: Superconductivity and its Applications 482 (2012), 6 – 18.

https://doi.org/10.1016/j.physc.2012.05.016 2011 Centennial supercon-

ductivity conference - EUCAS-ISEC-ICMC.

[18] K. K. Likharev and V. K. Semenov. 1991. RSFQ logic/memory family: a

new Josephson-junction technology for sub-terahertz-clock-frequency

digital systems. IEEE Transactions on Applied Superconductivity 1, 1

(March 1991), 3–28. https://doi.org/10.1109/77.80745
[19] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. 2014. Race

Logic: A Hardware Acceleration for Dynamic Programming Algo-

rithms. SIGARCH Comput. Archit. News 42, 3 (June 2014), 517–528.

https://doi.org/10.1145/2678373.2665747

[20] A. Madhavan, T. Sherwood, and D. Strukov. 2017. A 4-mm2 180-

nm-CMOS 15-Giga-cell-updates-per-second DNA sequence alignment

engine based on asynchronous race conditions. In 2017 IEEE Custom
Integrated Circuits Conference (CICC). 1–4. https://doi.org/10.1109/
CICC.2017.7993630

[21] R.Manohar. 2015. Comparing Stochastic andDeterministic Computing.

IEEE Computer Architecture Letters 14, 2 (July 2015), 119–122. https:
//doi.org/10.1109/LCA.2015.2412553

[22] O. A. Mukhanov, S. V. Rylov, V. K. Semonov, and S. V. Vyshenskii. 1989.

RSFQ logic arithmetic. IEEE Transactions on Magnetics 25, 2 (March

1989), 857–860. https://doi.org/10.1109/20.92421
[23] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. 2018. Low-Cost

Sorting Network Circuits Using Unary Processing. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 26, 8 (Aug 2018), 1471–
1480. https://doi.org/10.1109/TVLSI.2018.2822300

[24] P. Russer. 1971. General energy relations for Josephson junctions. Proc.
IEEE 59, 2 (Feb 1971), 282–283. https://doi.org/10.1109/PROC.1971.
8133

[25] James E. Smith. 2018. Space-Time Algebra: A Model for Neocor-

tical Computation. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA ’18). IEEE Press, 289–300.

https://doi.org/10.1109/ISCA.2018.00033
[26] James E. Smith. 2019. (Newtonian) Space-Time Algebra.

arXiv:cs.LO/2001.04242

[27] Igor I Soloviev, Nikolay V Klenov, Sergey V Bakurskiy, Mikhail Yu

Kupriyanov, Alexander L Gudkov, and Anatoli S Sidorenko. 2017.

Beyond Moore’s technologies: operation principles of a supercon-

ductor alternative. Beilstein Journal of Nanotechnology 8 (Dec 2017),

2689–2710. https://doi.org/10.3762/bjnano.8.269
[28] M. Tanaka, R. Sato, Y. Hatanaka, and A. Fujimaki. 2016. High-Density

Shift-Register-Based Rapid Single-Flux-Quantum Memory System for

Bit-Serial Microprocessors. IEEE Transactions on Applied Superconduc-
tivity 26, 5 (Aug 2016), 1–5. https://doi.org/10.1109/TASC.2016.2555905

[29] G. Tang, P. Qu, X. Ye, and D. Fan. 2018. Logic Design of a 16-bit

Bit-Slice Arithmetic Logic Unit for 32-/64-bit RSFQ Microprocessors.

IEEE Transactions on Applied Superconductivity 28, 4 (June 2018), 1–5.

https://doi.org/10.1109/TASC.2018.2799994
[30] G. Tang, K. Takata, M. Tanaka, A. Fujimaki, K. Takagi, and N. Takagi.

2016. 4-bit Bit-Slice Arithmetic Logic Unit for 32-bit RSFQ Micro-

processors. IEEE Transactions on Applied Superconductivity 26, 1 (Jan

2016), 1–6. https://doi.org/10.1109/TASC.2015.2507125
[31] Swamit S. Tannu, Poulami Das, Michael L. Lewis, Robert Krick, Dou-

glas M. Carmean, and Moinuddin K. Qureshi. 2019. A Case for Super-

conducting Accelerators. In Proceedings of the 16th ACM International
Conference on Computing Frontiers (CF ’19). ACM, New York, NY, USA,

67–75. https://doi.org/10.1145/3310273.3321561
[32] Sergey K Tolpygo. 2016. Superconductor digital electronics: Scalability

and energy efficiency issues. Low Temperature Physics 42, 5 (2016),

361–379.

[33] Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri

Strukov, and Timothy Sherwood. 2019. Boosted Race Trees for Low

Energy Classification. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19). Association for Computing Machin-

ery, New York, NY, USA, 215–228. https://doi.org/10.1145/3297858.
3304036

[34] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie, N.

Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto. 2007. Design

and Implementation of a Pipelined Bit-Serial SFQ Microprocessor,

CORE1β . IEEE Transactions on Applied Superconductivity 17, 2 (June

2007), 474–477. https://doi.org/10.1109/TASC.2007.898606

Session 5B: Exotic architectures — Keep architecture weird! ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

448

https://doi.org/10.1145/3307650.3322270
https://doi.org/10.1109/77.783712
https://doi.org/10.1109/77.622205
https://doi.org/10.1109/77.919349
https://doi.org/10.1109/77.919349
https://doi.org/10.1007/978-1-4684-8440-3_1
https://doi.org/10.1007/978-1-4684-8440-3_1
https://doi.org/10.1023/A:1007903527533
https://doi.org/10.1109/MC.2015.375
https://doi.org/10.1109/TASC.2013.2244634
http://www.wrcad.com/manual/wrsmanual.pdf
https://doi.org/10.23919/DATE.2019.8747356
https://doi.org/10.1016/j.physc.2012.05.016
https://doi.org/10.1109/77.80745
https://doi.org/10.1145/2678373.2665747
https://doi.org/10.1109/CICC.2017.7993630
https://doi.org/10.1109/CICC.2017.7993630
https://doi.org/10.1109/LCA.2015.2412553
https://doi.org/10.1109/LCA.2015.2412553
https://doi.org/10.1109/20.92421
https://doi.org/10.1109/TVLSI.2018.2822300
https://doi.org/10.1109/PROC.1971.8133
https://doi.org/10.1109/PROC.1971.8133
https://doi.org/10.1109/ISCA.2018.00033
http://arxiv.org/abs/cs.LO/2001.04242
https://doi.org/10.3762/bjnano.8.269
https://doi.org/10.1109/TASC.2016.2555905
https://doi.org/10.1109/TASC.2018.2799994
https://doi.org/10.1109/TASC.2015.2507125
https://doi.org/10.1145/3310273.3321561
https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1109/TASC.2007.898606

	Abstract
	1 Introduction
	2 Background
	2.1 Computing with Superconductors
	2.2 Race Logic

	3 Formalization
	3.1 Computational Temporal Logic
	3.2 Race Logic Semantics

	4 Superconducting Temporal Architecture
	4.1 Temporal Primitives in RSFQ
	4.2 Self-clocked Temporal RSFQ Circuits

	5 Evaluation
	5.1 Timing Analysis
	5.2 Proof-of-Concept

	6 Conclusion
	Acknowledgments
	References

