

First-principles modeling of efficiency of halide perovskites

Chris G. Van de Walle

Materials Department, University of California, Santa Barbara

with

Xie Zhang

Beijing Computational Science Research Center

Mark Turiansky Jimmy-Xuan Shen

ICOOPMA-EuroDIM 2022 Ghent, Belgium July 3-8, 2022

Supported by DOE

Van de Walle Computational Materials Group

vandewalle.materials.ucsb.edu

First-principles calculations

Density functional theory, many-body perturbation theory

Oxides

- Transparent conductors
- Dielectrics
- Thermal barriers
- Complex oxides
- Power electronics

Nitrides

Doping

Surfaces

- Interfaces
- Efficiency, loss

Quantum

defects

- Qubits
- Single photon emitters
- Decoherence

Hybrid perovskites

- Recombination mechanisms
- Defects
- Impurities
- Efficiency

Halide perovskites

- Efficient optoelectronic materials
 - Solar cells, light emitting diodes (LEDs)

- Prototype: methylammonium lead iodide MAPbl₃
- General: ABX₃

- A: Cs⁺, MA⁺, FA⁺
- B: Pb²⁺, Sn²⁺
- X: I⁻, Br⁻, Cl⁻...

Recombination mechanisms

"Shockley-Read-Hall" (SRH)

n: carrier density

Rate equation:
$$\frac{dn}{dt} = -An - Bn^2 - Cn^3$$

T. Kirchartz *et al.,* Adv. Energy Mater. **10**, 1904134 (2020).

Fitting to experimental data can introduce uncertainties, and does not elucidate fundamental mechanisms

Recombination in halide perovskites

First-principles studies of recombination rates

X. Zhang et al., Adv. Energy Mater. 10, 1902830 (2020).

X. Zhang *et al.,* J. Phys. Chem. Lett. **9**, 2903 (2018).

X. Zhang *et al.*, ACS Energy Lett. **3**, 2329 (2018).

J.-X. Shen *et al.*, Adv. Energy Mater. **8**, 1801027 (2018).

Focus of this talk

- First-principles studies
 - Radiative recombination
 - Auger recombination
 - Defect-assisted Shockley-Read-Hall (SRH) recombination
- □ First-principles approach:

Density functional theory

• HSE hybrid functional

J. Heyd et al., J. Chem. Phys. 118, 8207 (2003).

 Vienna Ab-initio Simulation Package (VASP); Quantum Espresso

Slow radiative recombination?

- Spin mismatch
- Phenomenological model with fitted parameters
 F. Zheng *et al.*, Nano Lett. **15**, 7794 (2015).
- Momentum mismatch
- P. Azarhoosh et al., APL Mater. 4, 091501 (2016).

MAPbl₃: $\sim 10^{-13}$ cm³s⁻¹

GaAs: ~10⁻⁹ cm³s⁻¹

Si: ~10⁻¹⁴ cm³s⁻¹

W. Tress, Adv. Energy Mater. 7, 1602358 (2017).

First-principles spin texture

X. Zhang, J.-X. Shen, and C. G. Van de Walle, J. Phys. Chem. Lett. 9, 2903 (2018).

Radiative recombination

Fermi's Golden Rule:

Radiative recombination

- Weak dependence on MA orientation (factor of 2)
- Limited impact of momentum mismatch on radiative recombination
- High radiative recombination coefficients (~10⁻¹⁰ cm³s⁻¹)
- Promising for light-emitting applications

H. Cho et al., Science **350**, 1222 (2015).

Y.-H. Kim *et al.*, Adv. Mater. **27**, 1248 (2015).

X. Zhang, J.-X. Shen, W. Wang, and C. G. Van de Walle, ACS Energy Lett. **3**, 2329 (2018).

Recombination in halide perovskites

First-principles studies of recombination rates

X. Zhang et al., Adv. Energy Mater. 10, 1902830 (2020).

Auger recombination

Fermi's Golden Rule:

$$C = \frac{2\pi}{\hbar n^3} \sum_{1234} \int f_1 f_2 \left(1 - f_3\right) \left(1 - f_4\right) \left| M_{1234} \right|^2 \delta\left(\varepsilon_1 + \varepsilon_2 - \varepsilon_3 - \varepsilon_4\right)$$
Quasi-Fermi occupation
Energy conservation

- μ_{c}
- First-principles calculations for very dense k-point grid, e.g., 50 x 50 x 50 for sampling the first Brillouin zone

Matrix elements

- Directly search for all possible Auger events that conserve energy and momentum
- · Usually on the order of a few tens of millions of possible events

$$\begin{split} M_{1234} \big|^2 &= \big| M_{1234}^d - M_{124}^x \big|^2 + \big| M_{124}^d \big|^2 + \big| M_{1234}^x \big|^2 \\ \text{Direct process:} \quad M_{1234}^d &= \langle \psi_1 \psi_2 | W | \psi_3 \psi_4 \rangle \\ \text{Exchange process:} \quad M_{1234}^x &= \langle \psi_1 \psi_2 | W | \psi_4 \psi_3 \rangle \end{split}$$

Auger recombination

- Theory: $C_{\text{tot}} = 7 \times 10^{-29} \text{ cm}^6 \text{s}^{-1} \text{ at } E_{\text{g}} = 1.6 \text{ eV}$
- Exp.:10⁻²⁹ ~ 10⁻²⁸ cm⁶s⁻¹ [R. L. Milot *et al.*, Adv. Funct. Mater. **25**, 6218 (2015).]

Auger recombination

• MAPbl₃ has a much greater Auger coefficient ~100x

Origin of strong Auger

Adv. Energy Mater. **8**, 1801027 (2018).

Spin-orbit energy splitting

Energy splitting in conduction bands causes resonance for eeh Auger

1

Band-structure engineering

• X-site substitution can suppress eeh Auger

What about hhe Auger?

X. Zhang, J.-X. Shen, and C. G. Van de Walle, Adv. Energy Mater. 9, 1902830 (2019).

B-site substitution allows suppressing hhe Auger

Suppressing lattice distortions

X. Zhang, J.-X. Shen, and C. G. Van de Walle, Adv. Energy Mater. 9, 1902830 (2019).

 Tunable lattice distortion and Rashba splitting by chemical substitution

Suppressing lattice distortions

 Suppressing lattice distortions and thus the Rashba splitting reduces Auger by one order of magnitude

Recombination in halide perovskites

First-principles studies of recombination rates

X. Zhang *et al.,* J. Phys. Chem. Lett. **9**, 2903 (2018).

X. Zhang *et al.*, ACS Energy Lett. **3**, 2329 (2018).

J.-X. Shen *et al.*, Adv. Energy Mater. **8**, 1801027 (2018).

X. Zhang et al., Adv. Energy Mater. 10, 1902830 (2020).

• Defect-assisted ("SRH") recombination limits efficiency

"Defect tolerance"

- Defect tolerance": defects are present, but do not cause strong nonradiative carrier recombination
- Concept emerged from early, less accurate, first-principles calculations for defects in MAPbl₃
 - none of the relevant defects had levels deep in the band gap
- Commonly invoked to explain the high efficiency of perovskite solar cells
- However, deep-level defects with concentrations ~10¹⁵ cm⁻³ are observed experimentally!

• Thermally stimulated current (TSC)

A. Baumann et al., J. Phys. Chem. Lett. 6, 2350 (2015).

Deep level transient spectroscopy (DLTS)

S. Heo *et al.*, Energy Environ. Sci. **10**, 1128 (2017).

Point defects in halide perovskites

First-principles calculations of formation energies and defect levels

1

C. Freysoldt *et al.*, Rev. Mod. Phys. **86**, 253 (2014).

Example: iodine interstitial (I_i)

$$E^{f}[\mathbf{I}_{i}^{q}] = E_{\text{tot}}[\mathbf{I}_{i}^{q}] - E_{\text{tot}}[\text{bulk}] - \mu_{\mathrm{I}}^{\prime} + qE_{\mathrm{F}} \checkmark$$

(chemical potential of I) Fermi level

(chemical potential of electrons)

- Density functional theory
- Hybrid functional
 - J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. **118**, 8207 (2003).
- Spin-orbit coupling
- Supercells, atomic relaxation

Defect concentration: $N_{def} = N_{sites} e^{-E^f/k_B T}$

Defect-assisted recombination in halide perovskites

 ε (+/0): charge-state transition level relevant for SRH recombination

- Usually, $C \propto e^{-\Delta E}$
- Mid-gap defects have best balance between C_n and C_p

Energy depends on atomic configuration Charge state D^0 has different atomic configuration from D^+

Valence band

Prominent defect: iodine interstitial

- Low formation energy \rightarrow high concentration
- Four capture processes

X. Zhang et al., Phys. Rev. B **101**, 140101 (2020).

Configuration coordinate diagram: $I_i^+ \rightleftharpoons I_i^0$

- Generally small capture barriers
 → high capture coefficients
- Capture coefficients do not decrease as expected with energy difference from band edge (i.e., $C \propto e^{-\Delta E}$)
- Two reasons:
 - Anharmonicity
 - "Marcus inverted region"

X. Zhang et al., Phys. Rev. B 101, 140101 (2020).

Capture coefficients

- $I_i^+ \rightleftharpoons I_i^0$ and $I_i^0 \rightleftharpoons I_i^$ charge-state transitions
- Four capture processes
- Total capture coefficient:

$$C_{\text{tot}} = \frac{C_n^0 + C_p^0}{1 + \frac{C_n^0}{C_p^-} + \frac{C_p^0}{C_n^+}}$$

Capture coefficients

• Total capture coefficient:

$$C_{\text{tot}} = \frac{C_n^0 + C_p^0}{1 + \frac{C_n^0}{C_p^-} + \frac{C_p^0}{C_n^+}}$$

• Nonradiative recombination rate:

$$R = An$$
; $A = N_{\text{def}} C_{\text{tot}}$

- The iodine interstitial is an efficient nonradiative recombination center
- Likely responsible for the observed rates in experiments
 - $N_{\rm def} \sim 10^{15} \, {\rm cm}^{-3}$
 - A. Baumann *et al.*, J. Phys. Chem. Lett. 6, 2350 (2015); S. Heo *et al.*, Energy Environ. Sci. 10, 1128 (2017).

$$\Rightarrow A \approx 10^7 \text{ s}^{-1}$$

X. Zhang et al., Phys. Rev. B 101, 140101 (2020).

Other point defects

- Also examined other native point defects
- Pb interstitial (Pb_i) and antisites are high in energy ⇒ unlikely to be present
- Iodine vacancy (V_{l}) : no charge-state transition levels in the band gap \Rightarrow cannot act as a recombination center
- Lead vacancy (V_{Pb}) : explicit calculations of recombination rates show that V_{Pb} does not cause efficient nonradiative recombination
- ⇒ lodine interstitial likely responsible for the observed nonradiative recombination: $A \approx 10^7$ s⁻¹ for $N_{def} \sim 10^{15}$ cm⁻³
- Iodine-rich synthesis conditions should be avoided
 - Extreme iodine-poor should be avoided as well
 - promote the formation of hydrogen vacancies

Hydrogen vacancies in MAPbl₃

- Hydrogen vacancies have been mostly overlooked when considering point defects
- MA: $CH_3NH_3 \rightarrow two types of H vacancies$
 - $V_{\rm H}(\rm C)$: removing H from a C atom
 - $V_{\rm H}(N)$: removing H from a N atom
- $V_{\rm H}(N)$ is an exceptionally strong recombination center (10⁻⁴ cm³s⁻¹)
- Present in high concentrations under I-poor and H-poor conditions

Qualitatively different behavior in FAPbl₃

- FA (formamidinium): CH(NH₂)₂
- $V_{\rm H}(C)$ and $V_{\rm H}(N)$ have much higher formation energies (lower concentrations) than in MAPbl₃
- $V_{\rm H}(C)$ has substantially lower capture coefficient
- Rationalizes why FA is essential for realizing high efficiency

Getting rid of H vacancy problem by using CsPbl₃

- CsPbl₃: deep-level defects are present (V_{Pb}, I_{Cs}, and I_i)
- Explicit computation of recombination coefficients: I_i is the dominant recombination center
- Similar total capture coefficient as I_i in MAPbI₃, but no need to worry about H vacancies!
- Origin of current inferior performance of CsPbl₃: poor stability (small Cs⁺ → small tolerance factor)
- Ways to enhance stability: alloying, strain, and improved growth techniques

Putting values in perspective

- A coefficient in halide perovskites is comparable to or higher than those in conventional semiconductors
- Halide perovskites are often called "defect tolerant"
 - "Defects may be present, but do not harm efficiency"
 - Notion based on older calculations showing that defects do not introduce deep levels in the band gap
- Calling hybrid perovskites "defect tolerant" is misleading
 - We do not call GaAs or GaN "defect tolerant" —we worry a great deal about defects!
- Distinctive feature of hybrid perovskites: they can be grown with low defect densities using low-cost deposition techniques

Material	A coefficient (s ⁻¹)
MAPbl ₃	1.4 × 10 ⁷
MAPbl ₃	1.5 × 10 ⁷
MAPbl _{3-x} Cl _x	0.5 × 10 ⁷
MAPbl _{3-x} Cl _x	1.2 × 10 ⁷
FAPbl ₃	0.7 × 10 ⁷
FAPbBr ₃	2.1 × 10 ⁷
GaN	$0.1 - 1.0 \times 10^7$
GaAs	$0.05 - 0.4 \times 10^{7}$

M. B. Johnston *et al.*, Acc. Chem. Res. **49**, 146 (2016).

F. Olivier *et al.*, Appl. Phys. Lett. **111**, 022104 (2017).

E. Yablonovitch *et al.*, Appl. Phys. Lett. **50**, 1197 (1987).

X. Zhang *et al.*, J. Phys. Chem. C **124**, 6022 (2020). UC SANTA BARBARA 39

Summary

- Rigorous first-principles calculations elucidate mechanisms
- Radiative recombination
 - Rashba spin splitting: spin texture, normal optical transitions
 - Rashba momentum splitting: limited impact, a factor of 2
 - J. Phys. Chem. Lett. 9, 2903 (2018); ACS Energy Lett. 3, 2329 (2018).
- Auger recombination
 - Resonance in band structure
 - Band-structure and lattice-distortion engineering allows reducing Auger
 - Adv. Energy Mater. 8, 1801027 (2018); Adv. Energy Mater. 9, 1902830 (2019).
- Defect-assisted SRH recombination
 - Halide perovskites often touted as "defect tolerant"; our work demonstrates that defects do impact efficiency.
 - Hydrogen-related defects act as strong nonradiative recombination centers

X. Zhang *et al.*, Phys. Rev. B **101**, 140101 (2020); J. Phys. Chem. C 124, 6022 (2020); Nat. Mater. 20, 971 (2021).

