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a b s t r a c t

A neural network correlation, RAD-NNET, is developed to simulate the realistic effect of non-gray radia-
tive absorption by a homogeneous mixture of combustion gases (CO2 and H2O) and soot using numerical
data generated by RADCAL. RAD-NNET is then applied to assess the accuracy of some commonly accepted
approximate approaches to evaluate radiative heat transfer in three-dimensional non-gray media. Results
show that there are significant errors associated with the current approximate approaches. RAD-NNET
can be readily implemented in commercial CFD codes to greatly enhance the accuracy of simulation of
radiative heat transfer in practical engineering systems.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past 50 years, many important advances have been
made both in computational techniques for multi-dimensional
radiative transfer and the understanding of spectroscopic absorp-
tion properties of different combustion gases [1,2]. Reasonably
accurate experimental data and computational results for radiative
absorption and emission by non-isothermal, inhomogeneous, non-
gray gas/particulate mixture are now available in the literature
[3,4]. Effects of scattering are also included in many studies [5].
However, few of these research advances have been utilized in
any significant degree by the engineering design/safety commu-
nity, particularly in the areas of combustion/fire, where the effec-
tive of radiation is known to be not only important, but
dominant. For example, in both simplified one-zone computational
code (e.g. CFAST [6]) and multi-dimensional CFD codes (e.g. FDS [7]
and FLUENT) developed for application in practical fire/combustion
systems, the simulation of the radiation effect is still largely lim-
ited to the utilization of one-dimensional empirical charts/correla-
tions [8]. The multi-dimensional geometric effect is accounted for
by the traditional mean beam length concept developed by Hottel
[9] and the utilization of some ad-hoc length scales without math-
ematical validation [10]. Currently, the lack of a simple-to-use and
mathematically validated methodology which would allow non-
experts in radiation to implement the correct physics of radiative
transfer into practical engineering design calculation is a serious
ll rights reserved.
obstacle to the design/safety community in understanding the
effect of radiative heat transfer.

The objective of this work is to demonstrate that the concept of
neural network is ideally suited as a tool to implement the com-
plex radiative absorption/emission data into an actual engineering
calculation, accounting for all important physical effects both accu-
rately and efficiently. Fundamentally, neural network is a branch of
computer science that uses interconnected processing elements
called neurons to either simulate or analyze complex phenomena
[11]. It has been used extensively in many disciplines including
biomedical research, geophysical science, as well as non-scientific
fields such as banking and insurance analysis (see Ref. [12] for a list
of various neural network applications). In heat transfer, the con-
cept of neural network has also been used extensively in areas such
as retrieval of optical properties [13–15], inverse heat transfer
problems [16–18] and heat exchanger applications [19]. But in
contrast to many of these existing applications, the objective the
current radiation neural network, RAD-NNET, is not to ‘‘predict”
new radiative absorption/emission information outside of the
parametric ranges within which the existing data were obtained.
Instead, RAD-NNET is used to ‘‘recover” existing radiative absorp-
tion/emission data efficiently and accurately for application in a
larger, more complex engineering calculation. Mathematically, it
can be proved rigorously that with an appropriate of layer struc-
ture and sufficient number of neurons, a neural network can
approximate any mathematical functions to a high degree of accu-
racy with no restriction on the number of independent and depen-
dent variables [20]. Any physical phenomenon which can be
formulated generally as a mathematical relation between a set of
input variables and a set of output variables, can thus be repre-
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Nomenclature

ak absorption coefficient
akg absorption coefficient of gas
aks absorption coefficient of soot
A1 area element
~ai output vector of the ith layer of the neural network

(i = 1, 2, 3)
~bi bias vector of the ith layer of the neural network (i = 1,

2, 3)
ekb blackbody emissive power
fv soot volume fraction
FCO2 mole fraction of CO2 relative to the CO2/H2O mixture
F12 exchange factor between area A1 and A2

L pathlength
L12 center-to-center distance between area A1 and A2

Lm mean beam length for an emitting volume
n the real component of the soot’s index of refraction
N dimension of the input vector of the neural network
~p input vector of the neural network
PCO2 partial pressure of CO2

PH2O partial pressure of H2O
Ptot partial pressure of the CO2/H2O mixture

Si number of neurons in the ith layer of the neural net-
work (i = 1, 2, 3)

Tg gas temperature
Tw wall temperature
~Wi weighted matrix of the ith layer of the neural network

(i = 1, 2, 3)

Greek Symbol
a absorptivity
as absorptivity of soot
Da excess absorptivity, Eq. (7)
Dan normalized excess absorptivity, Eq. (8)
e emissivity
j the complex component of the soot’s index of refraction
k wavelength
r Stefan Boltzmann constant
spd average transmissivity between two adjacent surface in

a cubical enclosure
spp average transmissivity between two parallel surface in a

cubical enclosure
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sented ‘‘exactly” by a neural network based on the available data
(experimental or computational). This provides the mathematical
basis for the development of RAD-NNET. Computationally, RAD-
NNET is effectively a ‘‘subroutine” or ‘‘correlation” which will pro-
vide the accurate simulation of the radiative absorption/emission
phenomenon in a larger, more complex calculation. It is developed
based on a specific data base and should be used within the range
of the parameter space of the data base. As newer and better data
becomes available, RAD-NNET can be continuously improved by an
update of the existing network.

In the present work, RAD-NNET is developed to simulate the
absorptivity by a one-dimensional isothermal non-gray homoge-
neous medium consisting of typical combustion products (CO2,
H2O and soots) at low pressure (i.e. one atmosphere). It is impor-
tant to note that even for a one-dimensional isothermal homoge-
neous medium, the absorptivity is a complicated function of five
independent variables (optical thickness of CO2 and H2O, emitter’s
temperature, mixture temperature, soot volume fraction) which
cannot be correlated by simple algebraic expressions and/or
empirical charts. A direct numerical evaluation of this quantity
(based on realistic spectral data) in an actual combustion compu-
tation is generally not feasible because of the excessive computa-
tion time/storage requirements. The development of RAD-NNET
is intended to overcome this mathematical ‘‘bottleneck”. In this pa-
per, the detail of the network and its general accuracy in re-pro-
ducing the existing data are first presented in Section 2. To
demonstrate the need of a better simulation of the radiative
absorptivity in practical engineering systems, RAD-NNET is used
to assess the validity of some of the commonly ‘‘accepted” approx-
imations in Section 3. Finally, some concluding remarks on the
general application of RAD-NNET and its future extension are pre-
sented in Section 4.
2. Development of the neural network

Numerical data generated by RADCAL [4] will be used to gener-
ate the neural network for the absorptivity. RADCAL is used be-
cause the computer code is known to have the capability to
generate reasonably accurate numerical prediction of the absorp-
tivity accounting for the effect of the five independent parameters.
It should be noted that an existing neural network can be readily
updated and improved with the inclusion of new data. The neural
network developed in this work can be readily updated with
experimental data beyond those incorporated by RADCAL. The net-
work can also be expanded to include other combustion species
(e.g. CO, CH4 and other hydrocarbon fuels) in future considerations.

Mathematically, the absorptivity of a one-dimensional homoge-
neous mixture is given by

aðTw; Tg ; PCO2 ; PH2O; fv ; LÞ ¼
R1

0 ekbðTwÞð1� e�akLÞdk

rT4
w

ð1Þ

where Tw and Tg are the wall temperature (or emitter’s temperature)
and the mixture temperature, respectively. PCO2 and PH2O are partial
pressures of CO2 and H2O. fv is the soot’s volume fraction and L is
the physical pathlength of the mixture. ekbðTwÞ is the blackbody emis-
sive power evaluated at the wall or emitter temperature. In RADCAL,
the absorption coefficient of the mixture, ak, is written as

akðTg ; PCO2 ; PH2O; fvÞ ¼ akgðTg ; PCO2 ; PH2OÞ þ aksðfmÞ ð2Þ

where akg and aks are the absorption coefficient for the gas mixture
and soot, respectively. The soot absorption coefficient, using the
Rayleigh small-particle absorption limit, is given by

aksðfmÞ ¼
c
k

ð3Þ

with

c ¼ 36pfm
nj

ðn2 � j2 þ 2Þ2 þ 4n2j2
ð4Þ

where n and j are the real and imaginary component of the soot’s
index of refraction, respectively. Note that the effect of the overlap-
ping of absorption bands of CO2 and H2O is accounted for in the for-
mulation of RADCAL.

Physically and also confirmed by numerical data, it is well
known that the absorptivity depends only weakly on the physical
pathlength L and is mainly a function of the optical thicknesses,
PCO2 L; PH2OL and fmL. Focusing on application to combustion phe-
nomena (e.g. fires) occurring in atmospheric conditions, the pres-
ent work also limits the neural network for mixtures with
nitrogen (N2) as the inert gas and the total pressure of the mixture
to be 1 atm. Using RADCAL, numerical data are generated in the
following ranges of input variables



Fig. 1. Structure of a three-layer neural network used in the correlation of the excess absorptivity, DaðTw; Tg ; PCO2 L; PH2 OL; fmLÞ.

Fig. 2. Comparison between the neural network prediction and the RADCAL results
for the region 0.1 kPa m < PgL < 1.0 kPa m.

Table 1
Dimension of the weighting matrix and bias vector for the six neural networks with
constant gaseous optical thicknesses.

PgL (kPa m) N S1 S2 S3

0.01 4 9 6 1
0.05 4 15 8 1
0.1 4 15 9 1
0.5 4 17 14 1
1.0 4 17 11 1
5.0 4 15 10 1
10.0 4 15 10 1
50.0 4 16 12 1
100.0 4 16 12 1
300.0 4 16 12 1
1000.0 4 17 13 1
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0 � PgL � 1000 kPa m; Pg ¼ PCO2 þ PH2O

0 � FCO2 � 1:0; FCO2 ¼
PCO2

Pg

0 � fvL � 10�6 m
300K � Tw; Tg � 2000 K

ð5Þ

Because the total gas pressure is assumed to be 100 kPa, L is as-
sumed to be 1 m in the generation of numerical data in the range
of PgL 6 100 kPa-m while L is assumed to be 10 m in the range of
PgL P 100 kPa-m. Absorptivity data are generated over 550 discrete
value of PgL, 11 discrete value of FCO2 , 10 discrete value of fvL, 13 dis-
crete value of Tw and Tg, respectively, corresponding to a set of over
10 million data points. In general, the data are distributed evenly
over the range of the input variable space. Numerical experiments
show that the number of data point is sufficient and the distribution
is well distributed to generate an accurate neural network for the
data set.

Even though there’s no restriction on the size of the data set and
the number of variables used in the development of a neural net-
work, the development process can be made more efficient if the
data set can be re-organized using physical and mathematical con-
sideration. For example, using the Rayleigh small-particle limit of
the absorption coefficient as shown in Eq. (3), the absorptivity
due to soot only can be readily integrated to yield [1]

asðTw; fmLÞ ¼
R1

0 ekbðTwÞð1� e�asLÞ
rT4

w

¼ 1� 15
p4 wð3Þ 1þ cLTw

C2

� �
ð6Þ

with C2 being the second radiation constant and w(3)(z) is the pen-
tagamma function for which tabulated values are available. Since
the effect of soot absorption can be readily evaluated by Eq. (6), it
is computationally efficient to develop a neural network only for
the ‘‘excess absorptivity” given by

DaðTw; Tg ; PgL; FCO2 ; fmLÞ ¼ aðTw; Tg ; PgL; FCO2 ; fmLÞ � asðTw; fmLÞ ð7Þ

Note that Da is still a function of five independent variables includ-
ing the soot volume fraction fvL because the total absorptivity is not
linearly separable into a ‘‘soot” component and a ‘‘gas” component.
In the limit of zero soot volume fraction, Da is the total gas
absorptivity.

Since the gaseous optical thickness PgL is expected to have the
most significant effect on the behavior of Da, the input optical
thickness space is separated into 10 distinct regions in the genera-
tion of the neural network. Numerical experiments show that this
is effective in reducing the size of the neural network needed for an
accurate simulation of the numerical data in each of the considered
optical thickness region. Specifically, neural networks for Da are
first generated for eleven specific values of the PgL (0.01, 0.05,
0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 300.0 and 1000.0 kPa-m). For
the 10 intermediate regions, neural networks are generated for
the normalized ‘‘excess absorptivity” given by



Table 2
Dimension of the weighting matrix and bias vector for the neural networks of the five
regions of optical thicknesses.

PgL (kPa m) N S1 S2 S3

0.01–0.05 5 8 5 1
0.05–0.1 5 5 3 1
0.1–0.5 5 7 4 1
0.5–1.0 5 6 4 1
1.0–5.0 5 9 5 1
5.0–10.0 5 7 4 1
10.0–50.0 5 8 5 1
50.0–100.0 5 8 5 1
100.0–300.0 5 8 5 1
300.0–1000.0 5 8 5 1
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DanðTw; Tg ; PgL; FCO2 ; fmLÞ

¼ DaðTw; Tg ; PgL; FCO2 ; fmLÞ � DaminðTw; Tg ; FCO2 ; fmLÞ
DamaxðTw; Tg ; FCO2 ; fmLÞ � DaminðTw; Tg ; FCO2 ; fmLÞ ð8Þ

where Damin and Damax are the ‘‘excess absorptivity” evaluated at
the minimum and maximum gaseous optical thickness of the con-
sidered region.
Fig. 3. (a) Total emissivity of CO2/air mixtures as a function of pressure-pathlength
and gas temperature, comparing neural network with measurements by Leckner
[21]. (b) Total emissivity of H2O/air mixtures as a function of temperature,
comparing neural network with measurements by Leckner [21].
A three-layer network, as shown in Fig. 1, is used as a basis
for the neural network development. The choice of a three-layer
network is based the practical need to maintain the number of
neurons needed for an accurate correlation to a reasonable value
(say, less than 20). Numerical experiments show a three-layer
structure is adequate for the current set of absorptivity data un-
der consideration for all optical thickness regions. A ‘‘hyperbolic
tangent sigmoid” function is used as the transfer function for the
first two layers while a linear transfer function is used for the
third layer. Using the Levenberg–Marquardt algorithm [11], a
neural network with a set of S1, S2 and S3 neurons in the
three-layer can be ‘‘trained” to yield the values of the three
weight matrices ~W1, ~W2, ~W3 and three bias vectors ~b1, ~b2, ~b3

which would minimize the error between the network predic-
tion and actual data. For the current neural network, the output
vector is a scalar (absorptivity) and therefore S3 = 1. Mathemati-
cally, the predicted value of the normalized output, a3, for a gi-
Fig. 4. Comparison between RAD-NNET and Eq. (12) in the absorptivity prediction
for a CO2/N2 mixture. (Note: the gas emissivity predicted by RAD-NNET is used in
the evaluation of Eq. (12))



Fig. 5. Comparison between RAD-NNET and Eq. (12) in the absorptivity prediction
for a H2O/N2 mixture. (Note: the gas emissivity predicted by RAD-NNET is used in
the evaluation of Eq. (12)
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ven normalized input vector ~p with the currently selected set of
transfer function, is given by

a3 ¼
XS3

i¼1

a2
i W3

i þ b3 ð9Þ
Fig. 6. Cubical enclosure with characteristic dimension D used in the evaluation of
spp and spd.
with

a2
i ¼ tanh

XS1

j¼1

W2
ija

1
j

 !
þ b2

i

" #
; i ¼ 1; . . . ; S2 ð10Þ

a1
i ¼ tanh

XN

j¼1

W1
ijpj

 !
þ b1

i

" #
; i ¼ 1; . . . ; S1 ð11Þ

and N being the dimension of the normalized input vector. Results
show that the ‘‘training” of the network was easily accomplished
using standard MATLAB program in a PC. All numerical data are
simulated to within a relative error of less than 0.5%. A comparison
between the neural network prediction and the RADCAL results for
a typical region is shown in Fig. 2. Dimensions of the weighted
matrices and bias vectors for the 11 neural networks are summa-
rized in Tables 1 and 2. Numerical values of neural networks are
available to readers upon request.

In general, the accuracy of RAD-NNET is expected to be identical
to that of RADCAL, which is known to be quite adequate for appli-
cations in combustion. For example, a comparison between RAD-
NNET and some emissivity date for a CO2/N2 mixture and H2O/N2
Fig. 7. Average transmissivity between two parallel surfaces and two adjacent
surfaces in a cubical closure containing soot with various volume fraction, as
predicted by Eqs. (19) and (20).
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mixture [21] is illustrated by Fig. 3a, 3b. The agreement is excellent
over a large range of optical thicknesses. Comparison with other
available data [22,23] also shows similar agreement. Since RADCAL
is based on direct integrations of the narrow-band spectral line, the
same order of accuracy is expected for RAD-NNET in its prediction
of absorptivity of a CO2/H2O/N2/soot mixture, accounting for the
overlap of absorption bands of CO2 and H2O, the continuous
absorption by soot, as well as the combined effect of the emitter’s
temperature Tw and the mixture temperature Tg.

3. Applications

The potential application of RAD-NNET is quite extensive. Due
to its simplicity and accuracy, RAD-NNET can be readily imple-
mented in any CFD calculations to simulate the effect of radiative
absorption, provided the assumption of a homogeneous absorbing
media between the emitter and the absorber can be justified. For
non-uniform or non-isothermal media, RAD-NNET can be com-
bined with existing inhomogeneous models such as the Curtis–
Fig. 8. Average transmissivity between two parallel surfaces in a cubical cl
Godson approximation [24] to provide effective simulation of radi-
ative absorption. For situations in which the Curtis–Godson
approximation and other approximate inhomogeneous models
are not applicable, an extended version of RAD-NNET can be read-
ily generated using RADCAL to generate the ‘‘exact” numerical data
for absorption by the considered inhomogeneous media. Indeed,
this effort to extend RAD-NNET is currently under consideration
and will be presented in future publications.

In the present work, the focus of the application of RAD-NNET is
to rigorously assess the accuracy of some commonly accepted
approximations used in the evaluation of radiative heat transfer
in practical engineering systems. It is interesting to note that, until
now, many of these approximations are used routinely in the engi-
neering calculations without mathematical validation.

The first area in which empirical expressions and approxima-
tions are commonly used is in the evaluation of absorptivity. Since
gas absorption data are generally presented in terms of emissivity,
the evaluation of absorptivity by a gas mixture at temperature Tg

for radiation emitted from a source of different temperature Tw is
osure containing a H2O/N2 mixture, as predicted by Eqs. (19) and (20).
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difficult for practicing engineers who do not have the necessary
skills or computational resources required for a detailed numerical
calculation. Currently, a common approach is to utilize an empiri-
cal expression introduced more than forty years ago [25], which
estimates the absorptivity from the gas emissivity by

ag ¼ eg
Tg

Tw

� �1:5

ð12Þ

Comparisons between RAD-NETT and the approximate absorptivity
as predicted by Eq. (12) for different emitter temperature Tw for a
CO2/N2 mixture and H2O/N2 mixture are shown in Figs. 4 and 5. It
is apparent that while Eq. (12) yields the correct qualitative behav-
ior that the absorptivity increases with increasing gas temperature
Tg, the approximation generally has significant error (higher than
100% and up to 1000%) and cannot be used reliably in any engineer-
ing calculations.

Another area of radiation heat transfer in which empirical and
semi-empirical approximations are used extensively is in the
evaluation of transmission/absorption by non-gray gases in mul-
ti-dimensional systems. It is important to note that even in a
Fig. 9. Average transmissivity between two adjacent surfaces in a cubical cl
simplified model such as a one-zone model with a homogeneous
gas mixture, the radiative transfer to and from each boundary is
three-dimensional and depends strongly on geometry. Without
much mathematical validation, a commonly used approximate ap-
proach is to use the one-dimensional expression for gas emissivity
and the concept of mean beam length of a gas volume to determine
an ‘‘effective” absorption coefficient for the considered medium.
For two surface elements on the boundary of the gas volume, an
effective transmissivity is then evaluated based on an ‘‘average”
distance between the two surfaces.

Specifically in the approximation, the total emissivity of the
gas/soot mixture, eT, is first evaluated by

eT ¼ eg þ es � eges ð13Þ

where eg is the gas emissivity which can be obtained from one-
dimensional empirical correlations or emissivity charts based on a
mean beam length of the emitting/absorbing volume given by

Lm ¼ 3:6
V
A

ð14Þ
osure containing a H2O/N2 mixture, as predicted by Eqs. (19) and (20).
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with V and A being the volume and surface area of the mixture,
respectively. The soot emissivity, es, is evaluated by the following
approximate expression

es ¼ 1� e�KLm ð15Þ

with

K ¼ 3:6
cTg

C2
ð16Þ

Eqs. (15) and (16) have been demonstrated to be an accurate
approximation of Eq. (6) [26]. An effective absorption coefficient
for the mixture, aT, is then introduced as

aT ¼ �
lnð1� eTÞ

Lm
ð17Þ

For two black surfaces, A1 and A2 situated at the boundary of the
mixture volume, the radiative heat transfer is written as

Q 1!2 ¼ rT4
1A1F12s12 ð18Þ
Fig. 10. Average transmissivity between two parallel surfaces in a cubical c
where F12 is the exchange factor between the two surfaces and s12

is the average transmissivity between the two surface given by

s12 ¼ e�aT L12 ð19Þ

In Eq. (19), the length scale L12 is typically taken to be the center-to-
center distance between the two surface. The approximation, as
represented by Eq. (13) through (19), is used as a ‘‘reasonable” pro-
cedure to estimate the radiative heat transfer through a non-gray
gas/soot mixture in many existing CFD codes (for example, Refs.
[6], [7] and [10]).

Since the total absorptivity of a gas/soot mixture can be evalu-
ated accurately and efficiently with RAD-NNET, the average trans-
missivity can be evaluated quite conveniently by a direct
numerical integration as follow:

s12 ¼
1

A1F12

Z
A1

Z
A2

cos h1 cos h2½1� aðTw; Tg ; PgL; FCO2 ; fmLÞ�
pL2 dA2 dA1

ð20Þ

where L is the physical pathlength between the two differential
areas and h1, h2 are the angles between the line of sight and the unit
losure containing a CO2/N2 mixture, as predicted by Eqs. (19) and (20).
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normal of the two differential areas. Eq. (20) can now be used to as-
sess the accuracy of Eq. (19) for various mixture conditions and geo-
metric configurations.

Consider a cubical enclosure with dimension D as shown in
Fig. 6. Let spp and spd be the average transmissivity between two
parallel and two adjacent surfaces respectively. The evaluation of
these transmissivities by Eqs. (19) and (20) for an enclosure con-
taining only soot with various volume fractions are presented in
Fig. 7a and 7b. Since Eq. (19) is evaluated at the mixture tempera-
ture Tg and the soot absorption is only a function of the emitter
temperature Tw, Eq. (19) will always lead to significant error when
Tg – Tw, data with Tw = Tg only are shown in Fig. 7a and 7b. It is
interesting to note that in the limiting case with Tg = Tw, the trans-
missivity predicted by Eq. (19) can still have significant error, par-
ticularly in spp. This is due to the error of using the effective mean
beam length in the evaluation of the effective absorption coeffi-
cient. Physically, a significant fraction of the radiative energy trans-
mitted between two parallel surface must propagate through a
distance larger than D. The mean beam length, as evaluated by
Fig. 11. Average transmissivity between two adjacent surfaces in a cubical c
Eq. (14), is 0.6D. This leads to an underestimate of the soot absorp-
tion, leading to a larger value of the transmissivity.

Results for the two transmissivities for CO2/N2 and H2O/N2 mix-
tures with various concentration and different temperatures are
shown in Figs. 8–11. To eliminate any source of disagreement
due to the use of different correlations, RAD-NNET is used in the
evaluation of gas emissivity in Eq. (13). The error of using Eq.
(19) is clearly quite substantial. Note that the approximation also
fails to capture the general qualitative trend of decreasing gas
absorptivity with increasing gas temperature (at a fix emitter tem-
perature). This error can have a significant impact in the prediction
of the transient behavior in many practical combustion scenarios
such as the heat transfer between walls during the growth of a fire.
When Tg = Tw, a direct comparison between the approximate re-
sults with the RAD-NNET results presented in these figures also
shows significant differences.

In general, results presented in Fig. 7 through 11 show that the
approximation, as represented by Eqs. (13) through (19), does not
yield accurate prediction of the average transmissivity for a general
losure containing a CO2/N2 mixture, as predicted by Eqs. (19) and (20).
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soot/CO2/H2O/N2 combustion mixture and should not be used in
practical engineering design/safety calculations.

4. Conclusion

Neural network is shown to be an effective tool to allow data
(numerical or experimental) of complex physical phenomenon
such as radiative heat transfer to be utilized accurately and effi-
ciently in a practical engineering calculation. A neural network
RAD-NNET, for the radiative absorptivity of an isothermal combus-
tion mixture is developed based on numerical data generated by
RADCAL. As an example of implementation, the network is applied
to assess the accuracy of two widely accepted approximation ap-
proaches used in the evaluation of radiative absorption of combus-
tion media. Comparisons show that these two approaches are
highly accurate.

For non-isothermal, inhomgeneous media, RAD-NNET can be
combined with existing models such as the Curtis–Godson approx-
imation [24] to accurately simulate the radiative absorption. For
general applications, it is also important to develop a neural net-
work for average absorptivity of a ‘‘gas” volume due to emission
by the surrounding medium and boundaries. This effort, which will
be formulated in the format of generalized exchange factors intro-
duced in recent works [27,28], is current under way and will be re-
ported in future publications.
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