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ABSTRACT 

The formulation of a multiple absorption coefficient zonal method (MACZM) is 

presented.    The concept of generic exchange factors (GEF) is introduced.  Utilizing the GEF 

concept, MACZM is shown to be effective in simulating accurately the physics of radiative 

exchange in multi-dimensional inhomogeneous non-gray media.  The method can be directly 

applied to a fine-grid finite-difference or finite-element computation.  It is thus suitable for 

direction implementation in an existing CFD code for analysis of radiative heat transfer in 

practical engineering systems. 

The feasibility of the method is demonstrated by calculating the radiative exchange 

between a high temperature (~3000 K) molten nuclear fuel (UO2) and water (with a large 

variation in absorption coefficient from the visible to the infrared) in a highly 3-D and 

inhomogeneous environment simulating the premixing phase of a steam explosion. 

 

NOMENCLATURE 
 
a  = absorption coefficient 

A = area element 

dA = differential area element 

dV = differential volume element 

D = length scale (grid size) of the discretization 
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ggzzF  = dimensionless volume-volume exchange factor,  Eq. (11a) 

ggxzF  = dimensionless volume-volume exchange factor,  Eq. (11b) 

gszF  = dimensionless volume-surface exchange factor, Eq. (14a) 

gsxF  = dimensionless volume-surface exchange factor, Eq. (14b) 

1 2g g   = volume-volume exchange factor, Eq. (1) 

1 2g s   = volume-surface exchange factor, Eq. (5) 

cL  = characteristic lengths between two elements along the selected optical path 

mbL  = mean beam length between two volume (area) elements, Eq. (16) 

n   = unit normal vector 

, ,x y zn n n  = dimensionless distance coordinate, Eq. (12) 

r = distance between volume elements, Eq. (3) 

s = distance, Eq. (4) 

1 2s s   = surface-surface exchange factor, Eq. (6) 

V = volume element 

Q = heat transfer 

T = temperature 

x = coordinate 

y = coordinate 

z = coordinate 

 

σ  = Stefan Boltzmann constant  

τ  = optical thickness, Eq. (3) 

 

subscripts 

 

1,2 = label of volume (area) element 
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INTRODUCTION 

The ability to assess the effect of radiation heat transfer in multi-dimensional 

inhomogeneous media is important in many engineering applications such as the analysis of 

practical combustion systems and the mixing of high temperature nuclear fuel (UO2) with water 

in the safety consideration of nuclear reactors.  Over the years, many different solution 

techniques with various level of complexity (e.g. the differential (PN) method [1, 2], the multi-

flux or the discrete ordinate methods [3-7]), the discrete transfer method [8-11], the finite volume 

method [12-15], the finite element method [16, 17], the Monte Carlo method [18-21] and the 

zonal method [22-24]) have been developed to provide a quantitative assessment of the radiation 

effect.  While these techniques all have some degree of success in demonstrating certain effects 

of the radiation heat transfer, particularly in simplified idealized conditions (e.g. 1D or 2D gray 

homogenous medium), none of these techniques have been developed sufficiently so that it can 

be used robustly and accurately in the design of practical engineering systems. 

Indeed, the lack of a computationally efficient and accurate approach has been a major 

difficulty limiting engineers and designers from addressing many important engineering issues 

accounting for the effect of thermal radiation.   For example, in the analysis of steam explosion 

for a reactor safety consideration, it is important for account for the radiative exchange between 

hot molten material (e.g. UO2) and water.   The absorption coefficient for water is plotted 

together with the blackbody emissive power at 3052 K (the expected temperature of molten UO2 

in a nuclear accident scenario) in Figure 1.  The radiative exchange between water and UO2 must 

account for the highly nongray and rapidly increasing (by more than two order of magnitude) 

characteristic of the absorption coefficient of water.   The multi-dimensional and inhomogeneous 

aspect of the “premixing” process are illustrated by Figure 2.  In this particular scenario, molten 

UO2 is released from the top into a cylindrical vessel with an annular overflow chamber as 

shown in the figure.  Even with highly subcooled water (say, 20 C at 1 atm), voiding occurs 

quickly leading to a complex two phase mixture surrounding the hot molten UO2.  The radiative 

heat transfer between the hot molten UO2 and the surrounding water is a key mechanism 

controlling the boiling process.  The boiling process, on the other hand, depends on the radiative 

heat transfer and thus the amount of liquid water surrounding the hot molten material.  An 

accurate assessment of this interaction is key to the understanding of this “premixing” process 
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and ultimately to the resolution of the critical issue of steam explosion in the consideration of 

reactor safety. 

Over the years, the zonal method has been shown to be an effective approach to account 

for the multi-dimensional aspect of radiative heat transfer in homogeneous and isothermal media 

[22,23]. This method was later extended for application to inhomogeneous and non-isothermal 

media with the concept of “generic” exchange factors (GEF) [24].   The underlying principle of 

the extended zonal method is that if a set of generic exchange factors with standard geometry is 

tabulated, the radiative exchange between an emitting element and an absorbing element of 

arbitrary geometry can be generated by superposition.  The inhomogeneous nature can be 

accounted for by using the appropriate average absorption coefficient in the evaluation of the 

generic exchange factor.   As grid size decreases, it is expected that the accuracy of the 

superposition will increase.  The error of using a single average absorption to account for the 

absorption characteristics of the intervening medium will also decrease. 

While the extended zonal method was effective in accounting for the effect of an 

inhomogeneous medium in some problems [24], the accuracy of the approach for general 

application is limited.  Specifically, by using a set of GEF which depends on only a single 

average absorption coefficient, the method do not simulate correctly the physics of radiative 

exchange between two volume elements which depends generally on at least three characteristic 

absorption coefficients (namely, the absorption coefficient of the emitting element, the 

absorption coefficient of the absorbing element and the average absorption coefficient of the 

intervening medium).   A reduction in grid size alone cannot address this fundamental limitation. 

In addition, the concept of a single average absorption coefficient for the intervening 

medium is also insufficient, particularly in an environment where there is a large discontinuity of 

the absorption coefficient in areas around either the absorbing or emitting elements.  For 

example, consider the radiative exchange between a radiating cubical water element V1 and an 

absorbing cubical water element V2 as shown in Figure 3.  The absorbing element V2 is an 

element situated at a liquid/vapor phase boundary.  It is adjacent to another element of liquid 

water on one side while surrounded by a medium which is effectively optically transparent.  As 

shown in the same figure, there are two possible optical paths, indicated as S1 and S2, over which 

the average absorption coefficient can be evaluated.  For the physical dimensions as shown in the 

figure, the average absorption coefficient evaluated along the optical path S2 increases from 6.38 
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1/cm to 306 1/cm as the wavelength increases from 0.95 µm to 3.27 µm while the average 

absorption coefficient evaluated along the optical path S1 remains effectively at zero (ignoring 

the very small absorption by water vapor).  It would be difficult to evaluate the radiative 

exchange between the two elements V1 and V2 accurately using a single exchange factor based 

on a single average absorption coefficient for the intervening medium.   This large discrepancy in 

the average absorption coefficient of the two optical paths remains even in the limit of small grid 

size. 

The objective of the present work is to present the mathematical formulation of a 

multiple absorption coefficient zonal method (MACZM) which is mathematically consistent 

with the physics of radiative absorption.  The method will be shown to be efficient and accurate 

in the simulation of radiative heat transfer in inhomogeneous media. A set of “three absorption 

coefficient” volume-volume exchange factors and “two absorption coefficient” volume-surface 

exchange factors are tabulated for rectangular elements.  The generic exchange factor (GEF) 

concept is expanded to a two-component formulation to account for the possible large variation 

of absorption coefficient in regions surrounding the absorbing or emitting elements.  Based these 

two-component generic exchange factors, the multi-dimensional and non-gray effect in any 

discretized domain can be evaluated accurately and efficiently by superposition.  The accuracy of 

the superposition procedure is demonstrated by comparison with results generated by direct 

numerical integration.  The characteristics of radiative exchange in a highly multi-dimensional, 

inhomogeneous and non-gray media such as those existed in the premixing phase of a steam 

explosion  (as shown in Figure 2) are presented to illustrate the feasibility of the approach. 

MATHEMATICAL FORMULATION 
 
General Formulation 

 The basis of the zonal method [22] is the concept of exchange factor.  Mathematically, 

the exchange factor between two discrete volumes, 1V  and 2V ,  in a radiating environment is 

 

   
1 2

1 2 1 2
1 2 2

V V

a a e dV dVg g
r

τ

π

−

= ∫ ∫      (1) 
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where 

 

( ) ( ) ( )
1/ 22 2 2

1 2 1 2 1 2r x x y y z z⎡ ⎤= − + − + −⎣ ⎦    (2) 

 

 

τ  is the optical thickness between the two differential volume elements, 1dV  and 2dV , given by 

 

 

    ( )
2

1

r

r

a s dsτ = ∫       (3) 

 

with a  being the absorption coefficient and  

 

 

    1s r r= −       (4) 

 

 

The integration in Eq. (3) is performed along a straight line of sight from 1r  to 2r .   

 In a similar manner, the exchange factor between a volume element 1V  and a surface 

element 2A  and that between two area elements 1A  and 2A  are given, respectively, by 

 

 

    
1 2

1 2 1 2
1 2 3

V A

a e n r dV dA
g s

r

τ

π

− ⋅
= ∫ ∫     (5) 

 

 

    
1 2

1 2 1 2
1 2 4

A A

e n r n r dAdA
s s

r

τ

π

− ⋅ ⋅
= ∫ ∫    (6) 

 



 7  

 

where 1n  and 2n are unit normal vectors of area elements 1dA  and 2dA . 

 It should be noted that Eqs. (1), (5) and (6) are applicable for general inhomogeneous 

non-scattering media in which the absorption coefficient is a function of position.   Physically, 

the exchange factor can be interpreted as the fraction of energy radiated from one volume (or 

area) and absorbed by a second volume (or area).  Specifically, for a volume 1V  with uniform 

temperature 1T , the absorption by a second volume 2V of radiation emitted by 1V  is given by 

 

 

    
1 2

4
1 1 2V VQ T g gσ→ =      (7) 

 

and the absorption by a black surface 2A  of radiation emitted by 1V  is given by 

 

 

    
1 2

4
1 1 2V AQ T g sσ→ =      (8) 

 

 

Similarly, for a black surface 1A  with uniform temperature 1T , the absorption by a volume 2V  of 

radiation emitted by 1A  is given by 

 

    

    
1 2

4
1 1 2A VQ T s gσ→ =      (9a) 

 

where, by reciprocity, 

 

    1 2 2 1s g g s=       (9b) 

     

 

Finally, the absorption by a black surface 2A  of radiation emitted by 1A  is given by 
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1 2

4
1 1 2A AQ T s sσ→ =      (10) 

 

 

The Discretization 

 The evaluation of Eqs. (7) to (10) in a general transient calculation in which the spatial 

distribution of the absorption coefficient is changing (for example, due to the change in the 

spatial distribution of hot materials and void fraction during the “premixing” process as shown in 

Figure 2) is too time consuming even with fast computers.  Anticipating that all calculations will 

be generally done in a discretized computational domain, it is useful to develop a set of 

“generic” exchange factors (GEF) which will be applicable for all calculations.   

 Specifically, consider the geometry as shown in Figure 4.   Assuming that the absorption 

coefficient within the two discrete volumes ( 1a  and 2a ) are constant, MACZM introduces two 

partial exchange factors, ( )1 2 zz
g g and ( )1 2 xz

g g to characterize the radiative exchange between the 

two volumes.  The parallel exchange factor ( )1 2 zz
g g  represents the radiative exchange between 

the two volume consisting only of those energy rays which pass through the top surface of V1 (z 

= z1 +D) and the bottom surface of V2 (z = z1 +nzD).  The transverse exchange factor ( )1 2 xz
g g , 

on the other hand,  represents the radiative exchange between the two volume consisting only of 

those energy rays which pass through the “x-direction” side surface of V1 (x = x1 +D) and the 

bottom surface of V2 (z = z1 +nzD).  Assuming that the absorption coefficient of the intervening 

medium is constant (but different for the two partial exchange factors), the two partial exchange 

factors can be expressed in the following dimensionless form 

  

( ) ( )1 2
1 2 ,2 , , , , ,zz

ggzz m zz x y z

g g
F a D a D a D n n n

D
=    (11a) 

 

( ) ( )1 2
1 2 ,2 , , , , ,xz

ggxz m xz x y z

g g
F a D a D a D n n n

D
=    (11b) 
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with   

 

2 1 2 1 2 1,    ,     x y z
x x y y z zn n n

D D D
− − −

= = =    (12) 

 

The two functions ( )1 2 ,, , , , ,ggzz m zz x y zF a D a D a D n n n  and ( )1 2 ,, , , , ,ggxz m xz x y zF a D a D a D n n n  are 

dimensionless functions of the three optical thicknesses ( )1 2 , ,, ,  or m zz m xza D a D a D a D  and the 

dimensionless separation between the two volume elements ( ), ,x y zn n n .   For a rectangular 

discretization with constant grid size (dx = dy = dz = D), these dimensionless distances only take 

on discretized value, i.e. , , 0,1,2x y zn n n = ⋅⋅ ⋅ .   The two dimensionless functions tabulated at 

different optical thicknesses ( )1 2 , ,, ,  or m zz m xza D a D a D a D  and discretized values of ( ), ,x y zn n n  

constitutes two sets of “generic” exchange factor (GEF) which will be applicable for all 

calculations with uniform grid size.  The intervening absorption coefficient ,m zza  is the average 

of the absorption coefficient taken along a line of sight directed from the center of the top area 

element of  V1 (z = z1) to the center of the bottom surface of V2 (z = z1 +nzD).    Similarly, the 

intervening absorption coefficient ,m xza  is the average of the absorption coefficient taken along a 

line of sight directed from the center of the “x-direction” side area element of  V1 (x = x1 +D) to 

the center of the bottom surface of V2 (z = z1 +nzD).   

 Mathematically, the exchange factor between the two cubical volumes can be generated 

from Eqs. (11a) and (11b) by superposition as 
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( )
( )
( )
( )
( )

1 2
1 2 ,2

1 2 ,

1 2 ,

1 2 ,

1 2 ,

1 2

, , , , ,

       , , , , ,

       , , , , ,

       , , , , ,

       , , , , ,

       , ,

ggzz m zz x y z

ggxz m xz x y z

ggxz m yz y x z

ggzz m yy z x y

ggxz m zy z x y

ggxz

g g F a D a D a D n n n
D

F a D a D a D n n n

F a D a D a D n n n

F a D a D a D n n n

F a D a D a D n n n

F a D a D

=

+

+

+

+

+ ( )
( )
( )
( )

,

1 2 ,

1 2 ,

1 2 ,

, , ,

       , , , , ,

       , , , , ,

       , , , , ,

m xy x z y

ggzz m xx y z x

ggxz m yx y z x

ggxz m zx z y x

a D n n n

F a D a D a D n n n

F a D a D a D n n n

F a D a D a D n n n

+

+

+

   (13) 

Eq. (13), together with the tabulated values of the two GEF’s, ( )1 2 ,, , , , ,ggzz m zz x y zF a D a D a D n n n  

and ( )1 2 ,, , , , ,ggxz m xz x y zF a D a D a D n n n , contain all the essential physics needed to characterize the 

radiative exchange between the two elements.  These two factors account for the absorption 

characteristics of the absorbing and emitting element ( )1 2,a D a D .  By using different average 

absorption coefficients ( ), ,   , , ,m pqa D p q x y z=  for the intervening medium, they accounts for not 

only the absorption characteristics of the intervening medium, but also and the variation of 

absorption characteristics in the neighborhood of the absorbing and emitting elements (such as 

the situation as shown in Figure 3).   

 The exchange factor 1 2g s  can be similarly expressed in a dimensionless form.  Using the 

geometry as shown in Figure 5, two partial exchange factors, ( )1 2 z
g s and ( )1 2 x

g s , are introduced.  

Physically, the parallel exchange factor ( )1 2 z
g s  represents the radiative exchange between 1V  

and 2A  consisting only of those energy rays which pass through the top surface of V1 (z = z1 

+D).  The transverse factor ( )1 2 x
g s , on the other hand, represents the radiative exchange between 

1V  and 2A  consisting only of those energy rays which pass through the “x-direction” side surface 

of V1 (x = x1 +D).   Assuming that the absorption coefficient of the intervening medium is 

constant (but different for the two partial exchange factors), the two partial exchange factors can 

be expressed in the following dimensionless form 
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( ) ( )1 2

1 ,2 , , , ,z
gsz m z x y z

g s
F a D a D n n n

D
=     (14a) 

 

   
( ) ( )1 2

1 ,2 , , , ,x
gsx m x x y z

g s
F a D a D n n n

D
=     (14b) 

 

Note that in Figure 5, the area 2A  is assumed to be parallel to the x-y plane.  For general 

application, this does not represent a loss of generality since a discretized area is always parallel 

to one of the face of the discretized volume in a rectangular coordinate system with equal grid 

size.   The two average absorption coefficients are taken along the two line of sights directed 

toward the center of the receiving plane, from the top area element (z = z1 +D) and x-direction 

side area element  (x = x1 +D) respectively.   Similar to Eq. (13), the exchange factor between 1V  

and 2A  can be generated by superposition as 

   

( )
( )
( )

1 2
1 ,2

1 ,

1 ,

, , , ,

       , , , ,

       , , , ,

gsz m z x y z

gsx m x x y z

gsx m y y x z

g s F a D a D n n n
D

F a D a D n n n

F a D a D n n n

=

+

+

    (15) 

 The exchange factor 1 2s s  is a function of only one average absorption coefficient for the 

intervening medium ( ma ).  Its formulation and mathematical behavior have already been 

presented and discussed in the earlier work [24] and will not be repeated here. 

 

The “Generic” Exchange Factor (GEF) and its Properties 

 Numerical data for the “generic” exchange factors are tabulated and they are presented in 

detail elsewhere [26].  For a practical calculation, these factors can serve as a “look-up” table 

based on which the radiative exchange can be computed accurately and efficiently by 

superposition.   

 Since GEF are functions only of optical thicknesses and geometric orientation, the 

accuracy of the superposition procedure is generally insensitive to the physical dimension D (i.e. 

the grid size).   As an illustration, the radiative exchange between a volume element and area 
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element as shown in Figure 6 is considered.  The superposition solutions are generated by 

subdividing the volume and area into cubical volume and area elements with dimension ∆.   A 

comparison between the superposition solution and that generated by direct numerical 

integration is shown in Table 1.  For the two volume elements as shown in Figure 7, a similar 

comparison is shown in Table 2.  In both cases, the accuracy of the superposition results appears 

to be somewhat insensitive to the dimension ∆.  The slight discrepancy can be attributed to the 

error in the interpolation of the “look-up” table over discrete optical thicknesses.  The numerical 

data presented in the two tables, for example, are generated with a set of GEF tabulated for 

1 2, , m ca D a D a L =  0, 0.11, 0.16, 0.22, 0.36, 0.44, 0.51 where cL  is the characteristic distance 

between the emitting and absorbing elements.   This set of optical thickness corresponds 

approximately to the value for which the transmissivity ( 1 2,  or m ca La D a De e eτ −− −= ) is 1.0, 0.9, 0.8, 

0.7, 0.6, 0.5 and 0.4 respectively.   The accuracy can be readily improved by tabulating GEF at 

more optical thicknesses.   Note that for practical application, the grid size is important only in 

determining how well the rectangular discretization simulates the actual geometry.   When the 

geometry is simulated accurately, the accuracy of MACZM depends only on the number of 

discrete data points used in the GEF table. 
 
APPLICATION 
 
 MACZM is applied to analyze the effect of radiation on the mixing of hot molten fuel 

with water.  The formulation of the full numerical model for the simulation of the mixing 

behavior is presented elsewhere [25].  For simplicity, the radiative absorption of steam is 

neglected in the calculation.  The detailed analysis and results will be presented in future 

publications.  In the present work, the predicted radiative heat transfer distribution is presented 

to illustrate the effectiveness of MACZM. 

 Because of the large variation of the absorption coefficient of water over the wavelength 

of interest as shown in Figure 1, a three-band approach is used to capture the difference in 

radiative energy distribution in the different wavelength region.  The step wise approximation 

used for the absorption coefficient of water is shown in Figure 8.   The absorption coefficients of 

the three bands correspond to the absorption coefficient of three characteristic wavelengths 

0.4915 µm, 0.9495 µm and 3.277 µm respectively.  The middle wavelength (0.9495 µm) is the 
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wavelength at which the blackbody emissive power at the molten fuel temperature (3052 K) is a 

maximum.   The fractions of energy radiated by the molten fuel (at 3052 K) for the three bands 

are 0.125, 0.647 and 0.228 respectively.  Using a grid size of 10 cm (with the inner vessel 

diameter of 70 cm), the rate of energy absorption by water predicted for three different times 

during the premixing transient are shown in Figures 9a, 9b and 9c.  It can be readily observed 

that the distribution of water energy absorption varies significantly among the three bands.  In 

the first band at which water is optically transparent, the radiation penetrates a significant 

distance away from the radiating molten fuel.  This accounts for the “red hot” visual appearance 

commonly observed in the interaction of high temperature molten fuel and water.  The first band, 

however, accounts only for 12.5% of the total energy radiated from the fuel.  For the remaining 

energy, the water absorption coefficient is high and the water absorption is highly localized in 

the region surrounding the fuel.  The localized absorption appears to dominate the boiling 

process as the second and third band account for more than 80% of the radiative emission.  

MACZM captures both the transient and spatial distribution of the radiative absorption 

distribution accurately and efficiently.   

 Because of the large variation of the water absorption coefficient over wavelength and 

the large values of the water absorption coefficient in the long wavelength region, a larger 

number of band and smaller grid size are needed to simulate accurately the effect of radiation on 

the premixing process.  This effort is currently underway and results will be presented in future 

publications. 

 
CONCLUSION 
 
 The formulation of a multiple absorption coefficient zonal method (MACZM) is 

presented.  Four “generic” exchange factors (GEF) are shown to be accurate and effective in 

simulating the radiative exchange.  Numerical values these GEF’s are tabulated and their 

mathematical behavior is described.   

 MACZM is shown to be effective in capturing the physics of radiative heat transfer in a 

multi-dimensional inhomogeneous three phase mixture (molten fuel, liquid and vapor) generated 

in the premixing phase of a steam explosion. 
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m 
 

a1D amD ∆/D g1s2(a1D, amD, 0, 0, m) 

numerical 0.109e-1,  0.879e-2,  0.709e-2,  0.415e-2 
1/2 0.109e-1,  0.880e-2,  0.711e-2,  0.418e-2 
1/3 0.109e-1,  0.879e-2,  0.711e-2,  0.417e-2 

1 0.1 0.1, 0.3, 0.5, 1.0 
 

1/4 0.109e-1,  0.879e-2,  0.710e-2,  0.417e-2 
 

numerical 0.770e-1,  0.621e-1,  0.500e-1,  0.292e-1 
1/2 0.764e-1,  0.617e-1,  0.498e-1,  0.292e-1 
1/3 0.765e-1,  0.617e-1,  0.498e-1,  0.292e-1 

1 1.0 0.1, 0.3, 0.5, 1.0 
 

1/4 0.766e-1,  0.618e-1,  0.499e-1,  0.292e-1 
 

numerical 0.381e-2,  0.252e-2,  0.167e-2,  0.600e-3 
1/2 0.381e-2,  0.253e-2,  0.168e-2,  0.603e-3 

2 0.1 0.1, 0.3, 0.5, 1.0 
 

1/3 0.380e-2,  0.252e-2,  0.167e-2,  0.601e-3 
 

numerical 0.265e-1,  0.176e-1,  0.117e-1,  0.417e-2 
1/2 0.264e-1,  0.175e-1,  0.116e-1,  0.417e-2 

2 1.0 0.1, 0.3, 0.5, 1.0 
 

1/3 0.264e-1,  0.175e-1,  0.116e-1,  0.416e-2 
 

 
 
 
 

 
Table 1:  Comparison between the exchange factor generated by direct numerical integration and 
those generated by superposition of GEF for the geometry of Figure 6.  (∆ is the length scale  of 
the element used in the GEF superposition). 
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mx, mz a1D amD a2D ∆/D g1g2 (a1D, a2D, amD,  mx, 0, mz) 

numerical 0.183e-1, 0.153, 0.383 
1/2 0.194e-1, 0.148, 0.391 
1/3 0.175e-1, 0.149, 0.384 

0, 0 = 
a2D 

N/A 0.1, 0.3, 0.5 
 

1/4 0.175e-1, 0.155, 0.386 
numerical 0.351e-2, 0.973e-2, 0.150e-1 
1/2 0.351e-2, 0.973e-2, 0.150e-1 
1/3 0.352e-2, 0.974e-2, 0.151e-1 

0, 1 0.1 N/A 0.1, 0.3, 0.5 
 

1/4 0.352e-2, 0.976e-2, 0.151e-1 
numerical 0.150e-1, 0.417e-1, 0.644e-1 
1/2 0.150e-1, 0.417e-1, 0.644e-1 
1/3 0.151e-1, 0.417e-1, 0.645e-1 

0, 1 0.5 N/A 0.1, 0.3, 0.5 
 

1/4 0.151e-1, 0.418e-1, 0.646e-1 
numerical 0.164e-2, 0.451e-2, 0.692e-2 
1/2 0.164e-2, 0.450e-2, 0.689e-2 
1/3 0.164e-2, 0.451e-2, 0.690e-2 

1, 1 0.1 0.0 0.1, 0.3, 0.5 

1/4 0.165e-2, 0.452e-2, 0.692e-2 
numerical 0.138e-2, 0.379e-2, 0.580e-2 
1/2 0.139e-2, 0.381e-2, 0.582e-2 
1/3 0.140e-2, 0.383e-2, 0.585e-2 

1, 1 0.1 
 

0.5 0.1, 0.3, 0.5 

1/4 0.140e-2, 0.384e-2, 0.587e02 
numerical 0.692e-2, 0.191e-1, 0.292e-1 
1/2 0.688e-2, 0.189e-1, 0.290e-1 
1/3 0.698e-2, 0.189e-1, 0.290e-1 

1, 1 0.5 0.0 0.1, 0.3, 0.5 

1/4 0.691e-2, 0.190e-1, 0.291e-1 
numerical 0.580e-2, 0.159e-1, 0.244e-1 
1/2 0.582e-2, 0.160e-1, 0.244e-1 
1/3 0.584e-2, 0.162e-1, 0.245e-1 

1, 1 0.5 0.5 0.1, 0.3, 0.5 

1/4 0.586e-2, 0.161e-1, 0.246e-1 
 
 
 

Table 2:  Comparison between the exchange factor generated by direct numerical integration and 
those generated by superposition of GEF for the geometry of Figure 7.  (∆ is the length scale  of 
the element used in the GEF superposition). 
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Figure Captions: 

 

Figure 1:  The absorption coefficient of water and the blackbody emissive power at 3052 K. 
 

Figure 2:  The distribution of molten UO2 (left, with the black dot representing the “fuel” as 
lagrangian particles) and the void fraction distribution of water (right) during a premixing 
process. 
 

Figure 3:  Example geometry highlighting the difference in “average absorption coefficient” for 
different optical path. 
 

Figure 4:  Geometry and coordinate system used in the definition of the 1 2g g  GEF. 
 
Figure 5:  Geometry and coordinate system used in the definition of the 1 2g s  GEF. 
 
Figure 6:  Geometry and coordinate system used in the illustration of the accuracy of the 
superposition procedure for the evaluation of the exchange factor 1 2g s . 
 
Figure 7:  Geometry and coordinate system used in the illustration of the accuracy of the 
superposition procedure for the evaluation of the exchange factor 1 2g g . 
 
Figure 8:  The 3-band approximation of the water absorption coefficient used in the premixing 
calculation. 
 
Figure 9a:  The distribution of radiative absorption by water in the three absorption band (the 
right three figures) at 0.6 s after the initial pour predicted by the premixing calculation.  The first 
figure on the left represents the distribution of the molten fuel (the black dots are the lagrangian 
particles representing fuel) and the second figure represents the void fraction distribution. 
 
Figure 9b:  The distribution of radiative absorption by water in the three absorption band (the 
right three figures) at 0.8 s after the initial pour predicted by the premixing calculation.  The first 
figure on the left represents the distribution of the molten fuel (the black dots are the lagrangian 
particles representing fuel) and the second figure represents the void fraction distribution. 
 
Figure 9c:  The distribution of radiative absorption by water in the three absorption band (the 
right three figures) at 1.0 s after the initial pour predicted by the premixing calculation.  The first 
figure on the left represents the distribution of the molten fuel (the black dots are the lagrangian 
particles representing fuel) and the second figure represents the void fraction distribution. 
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Figure 1:  The absorption coefficient of water and the blackbody emissive power at 3052 K. 
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Figure 2:  The distribution of molten UO2 (left, with the black dot representing the “fuel” as 
lagrangian particles) and the void fraction distribution of water (right) during a premixing 
process. 
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Figure 3:  Example geometry highlighting the difference in “average absorption coefficient” for 
different optical path. 
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Figure 4:  Geometry and coordinate system used in the definition of the 1 2g g  GEF. 
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Figure 5:  Geometry and coordinate system used in the definition of the 1 2g s  GEF. 
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Figure 6:  Geometry and coordinate system used in the illustration of the accuracy of the 
superposition procedure for the evaluation of the exchange factor 1 2g s . 
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Figure 7:  Geometry and coordinate system used in the illustration of the accuracy of the 
superposition procedure for the evaluation of the exchange factor 1 2g g . 
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Figure 8:  The 3-band approximation of the water absorption coefficient used in the premixing 
calculation.
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Figure 9a:  The distribution of radiative absorption by water in the three absorption band (the 
right three figures) at 0.6 s after the initial pour predicted by the premixing calculation.  The first 
figure on the left represents the distribution of the molten fuel (the black dots are the lagrangian 
particles representing fuel) and the second figure represents the void fraction distribution. 
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Figure 9b:  The distribution of radiative absorption by water in the three absorption band (the 
right three figures) at 0.8 s after the initial pour predicted by the premixing calculation.  The first 
figure on the left represents the distribution of the molten fuel (the black dots are the lagrangian 
particles representing fuel) and the second figure represents the void fraction distribution. 
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Figure 9c:  The distribution of radiative absorption by water in the three absorption band (the 
right three figures) at 1.0 s after the initial pour predicted by the premixing calculation.  The first 
figure on the left represents the distribution of the molten fuel (the black dots are the lagrangian 
particles representing fuel) and the second figure represents the void fraction distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


